木造建物の耐震性能評価に関する研究

1999年4月

中治 弘行

目 次

| 第1章 | はじめに                                               | 1  |
|-----|----------------------------------------------------|----|
| 1.1 | 研究の背景                                              | 1  |
| 1.2 | 既往の研究と問題点                                          | 2  |
| 1.3 | 本研究の目的と論文の構成..................................     | 3  |
| 第2章 | 在来構法木造住宅の実大水平力載荷実験                                 | 5  |
| 2.1 | 実験対象建物                                             | 5  |
| 2.2 | 実験の方法                                              | 12 |
| 2.3 | 実験結果の考察                                            | 14 |
|     | 2.3.1 SI 邸                                         | 15 |
|     | 2.3.2 TU 邸                                         | 18 |
|     | 2.3.3 TA 邸                                         | 20 |
|     | 2.3.4 SU 邸                                         | 22 |
|     | 2.3.5 日棟                                           | 24 |
| 2.4 | 荷重–変形関係に関する考察                                      | 30 |
|     | 2.4.1 建物重量の算定と層せん断力係数の評価                           | 30 |
|     | 2.4.2 壁率と建物耐力の関係                                   | 31 |
| 2.5 | ねじれ変形を考慮した復元力特性の推定–H 棟の場合–                         | 32 |
| 2.6 | 常時微動計測                                             | 33 |
| 2.7 | 自由振動実験                                             | 40 |
| 2.8 | 3種の実験結果の関連について.................................... | 43 |
| 2.9 | まとめ                                                | 44 |
| 第3章 | 木造耐力壁の耐震性能                                         | 46 |
| 3.1 | 筋かい付き木造軸組                                          | 46 |
|     | 3.1.1 実験の概要                                        | 46 |
|     | 3.1.2 試験結果                                         | 47 |
|     | 3.1.3 既往の実験との比較                                    | 61 |
|     | 3.1.4 まとめ                                          | 63 |
| 3.2 | 竹小舞下地土塗り壁                                          | 64 |
|     | 3.2.1 実験の概要                                        | 65 |
|     | 3.2.2 荷重と変形の関係及び破壊状況                               | 70 |

|     | 3.2.3 竹小舞下地土塗り壁の耐震性能評価              |
|-----|-------------------------------------|
|     | 3.2.4 まとめ                           |
| 3.3 | ボード下地左官仕上げ壁 99                      |
|     | 3.3.1 実験の概要                         |
|     | 3.3.2 荷重と変形の関係、破壊状況 90              |
|     | 3.3.3 耐震性能評価                        |
|     | 3.3.4 まとめ                           |
| 3.4 | 方杖・袖壁による耐震補強壁11                     |
|     | 3.4.1         実験の概要         12      |
|     | 3.4.2 実験結果の考察                       |
| 3.5 | 木造耐力壁の耐震性能評価指標に関する検討                |
| 3.6 | まとめ                                 |
| 第4章 | 木造住宅の常時微動計測に基づく振動特性評価 130           |
| 4.1 | 阪神・淡路地域で倒壊を免れた住宅                    |
|     | 4.1.1         常時微動計測の概要         130 |
|     | 4.1.2 解析結果                          |
|     | 4.1.3 まとめ                           |
| 4.2 | 京の町家                                |
|     | 4.2.1 常時微動計測の概要                     |
|     | 4.2.2 スペクトル特性及び固有周期140              |
|     | 4.2.3 まとめ                           |
| 4.3 | 戦前長屋と耐震補強住宅                         |
|     | 4.3.1 戦前長屋の振動特性                     |
|     | 4.3.2 耐震補強工事による振動特性の変化14            |
| 4.4 | 大阪府、兵庫県下の住宅 15 棟                    |
|     | 4.4.1 大阪、神戸などの地域における木造住宅の微動計測       |
|     | 4.4.2 振動特性の評価                       |
|     | 4.4.3 建物の壁率と剛性の関係                   |
|     | 4.4.4 各建物の振動特性に関する考察                |
|     | 4.4.5 まとめ                           |
| 4.5 | まとめ~木造住宅の常時微動計測~                    |
|     |                                     |

第5章 強震動下における木造建物の地震応答と耐震性評価

| 5.1 | 地震応   | 答解析用モデル                               | 186 |
|-----|-------|---------------------------------------|-----|
|     | 5.1.1 | 建物重量及び復元力特性の設定                        | 186 |
|     | 5.1.2 | 耐震安全性の判定尺度                            | 188 |
|     | 5.1.3 | 入力地震動                                 | 188 |
|     | 5.1.4 | 解析モデルの妥当性の検証......................... | 191 |
| 5.2 | 解析結   | 果                                     | 193 |
| 5.3 | おわり   | K                                     | 194 |
| 第6章 | まとめ   | と今後の課題                                | 201 |
| 6.1 | まとめ   |                                       | 201 |
|     | 6.1.1 | 総括                                    | 201 |
|     | 6.1.2 | 実大建物の水平力載荷実験                          | 202 |
|     | 6.1.3 | 木造耐力壁のせん断載荷実験                         | 203 |
|     | 6.1.4 | 常時微動計測による木造住宅の振動特性                    | 204 |
|     | 6.1.5 | 木造住宅の復元力特性のモデル化と強震応答解析                | 205 |
| 6.2 | 今後の   | 課題                                    | 206 |
| 参考  | 文献    |                                       | 208 |
| 主要  | な論文   |                                       | 213 |
| 謝辞  | £     |                                       | 216 |

# 第1章 はじめに

#### 1.1 研究の背景

1995 年兵庫県南部地震による阪神・淡路大震災は、死者 6000 人以上、全壊家屋 10 万棟を越す甚 大な被害を阪神・淡路地域にもたらした<sup>1)</sup>。兵庫県警の報告によると死亡者の 9 割近くは木造住宅の 倒壊による圧死あるいは窒息死とされている。このように、木造建物の被害は、その数的規模と被害 レベルの大きさが予想を越えるものであり、さらに、木造住宅の倒壊が多大な人的被害を引き起こし たことに、筆者は強い衝撃を感じた。

兵庫県南部地震のような直下型地震による被害は、日本の多くの都市において同様に起こり得るこ とであり、この阪神・淡路大震災から得られる教訓を活かして災害に強い街づくりに取り組むことが 大切であると実感した。とりわけ、都市域の地震災害を軽減するためには、そのほとんどが住宅であ る木造建物の耐震性を向上させることが都市防災の観点から極めて重要であると指摘される。

地震直後から被害調査に加わり、主として芦屋市、西宮市の木造住宅の被災状況を調査し、被害原因の解明に努めてきた<sup>1),2)</sup>。さらに被災地住民を対象におこなったアンケート調査により阪神地域の木造住宅の特徴と被害の関係について分析を進め<sup>3)-7)</sup>、同地域において、店舗併用住宅のような、間口が狭いにも関わらず耐力壁量が不十分である住宅において被害の大きかったこと、建築が古く維持管理が適切になされておらず各部が老朽化していたために、十分耐震性能を発揮できなかった住宅が少なくないことなどを明らかにした。

また、芦屋市、神戸市の木造住宅の常時微動測定を行い、これらの地域に存在する木造住宅の振動 特性の把握に努めてきた<sup>8),9)</sup>。

地震以後、すでに4年が経過し、都市の復興は進んでいるが、再建される木造住宅のほとんどは相 変わらず、大工の腕に頼るのが現状であり、動力学的な考察がほとんどなされておらず、木造住宅の 構造に関する科学的裏付けは、未だ充分とは言いがたい。

小・中規模の地震に対しては被害を受けないか、容易に復旧が可能な程度の被害しか受けないよう に、兵庫県南部地震のような大地震に対しては建物が倒壊しないようにするために、既存の木造建物 に対しては耐震補強法を、また、今後建設される木造建物に対して、合理的な耐震設計法を確立する 必要がある。そのためには、現存する、もしくは新築される木造建物について、その構法に応じて、 復元力特性を把握し、強振動下での挙動を明らかにすることが重要である。

現在、木造建物の耐震設計は、住宅程度の規模のものについては、建築基準法施行令第46条に規 定されるいわゆる壁量計算によるものがほとんどであるので、弾性設計に等しい。更に、これまでに 行われている各種工法の耐力壁のせん断載荷実験結果に見られる復元力特性の多くは、最大耐力まで しか描かれていない。しかし、地震被害例<sup>1)</sup>を見ても、木造住宅の地震応答は容易に非線形領域に達 するので、木造住宅の地震時応答を適切に評価するためには、耐力壁についてはもちろんであるが、

1

いわゆる耐力壁以外の要素の力学特性も含めた形で、建物全体について、大変形に至るまでの復元力 特性を定量的に把握し、数学的なモデル化を実現する必要がある。

壁量計算についても、建築基準法ならびに施行令が制定された当時 (昭和 25 年) から、用いられる 値は大きく変わっておらず、基準となっている実験結果も、ボードによる補強を施した場合に建設大 臣による認可を受ける必要がある他は、土塗り壁、筋かいで補強された軸組などについては、昭和 10 年代から昭和 20 年代前半にかけて行われたものがほとんどである。

今後新しく提案される各種工法の耐力壁について、その性能評価は実験によらざるを得ないであろ うが、実験によらずとも、材料や工法に基づいて、現在規定されている耐力壁以外の耐力負担要素も 含めて、耐震性能を評価するための解析手法の開発も重要である。

さらに、動力学的な観点から、建物の振動特性を簡便に知ることのできる方法として、常時微動計 測がある。筆者らは、1995年兵庫県南部地震以降、木造住宅を対象とした常時微動計測を40棟余り について行い、主として、京阪神地域の木造住宅の振動特性の分析を行っているが、木造住宅は地域 や建築時期によりその特性が大きく異なるので、常時微動計測を耐震設計時の一助とすることを考え れば、全国的規模での構法別・地域別のデータ集積が望まれる。

## 1.2 既往の研究と問題点

木造建物の耐震性能に関する研究は、1923年の関東大震災以後、田辺平學が1933年に著した『耐 震建築問答』<sup>10)</sup>にまで遡ることができる。田辺は、著書の中で和風木造における望ましい筋かいの入 れ方を紹介し、各種の耐力壁についてせん断載荷実験を行い、強度と剛度という形でまとめ、現在用 いられている壁倍率の基礎となる概念を示している<sup>11)</sup>。

久田俊彦は、田辺と同様に耐力壁の実験を行い<sup>12)</sup>、木造建物の耐力計算法を提案している<sup>13)</sup>。田 辺<sup>11)</sup> や久田<sup>12)</sup>の行った実験は、建築基準法施行令第46条に定められる壁量計算の基となっており、 その意義は大きいが、現在の「木造は耐力壁にだけ気をつければ良い」という設計姿勢の裏付けと なっている恨みがある。

同時期に、横尾義貫は、防災研究所年報第2号『木造家屋の耐震化』<sup>14)</sup>の中で、1947年福井地震 の際の被害調査を基に、耐力壁の量や配置により被害に差が見られたことを例に挙げ、現在の壁量計 算の基となる考えを示している。

昭和 30 年代から 40 年代前半にかけて、木構造に関する研究はほとんど見られず、木構造の科学的・ 技術的裏付けが乏しい状態が続いたが、1970 年代に入り、様々な工法の耐力壁の耐力試験や接合部 の強度試験が行われており、特に面材を釘で打ち付けた大壁についての実験が数多く行われている。

このように、各種工法の耐力壁の載荷実験は数多く行われており、それに基づいて、建築基準法施 行令第46条で規定される耐力壁以外にも、大臣告知という形式で、壁倍率が設定されている。

現在の壁量規定が無意味なものであるとは一概に言えないが、構造要素として耐力壁以外のものを

全く考慮に入れておらず、構造設計と呼ぶには余りにお粗末と言わざるを得ない。構造物として木造 住宅を論理的に構築し、構造特性を明らかにしなければならない。

村上らは、ボード類を釘打ちした耐力壁の復元力特性の評価法、床などの水平構面のせん断変形評 価、建物重量評価法の提案ならびに常時微動計測結果との比較、小屋組のせん断抵抗に関する切妻屋 根を対象にした実験など、木造住宅の耐震性能評価ならびに耐震設計法について一連の研究を発表し ている<sup>15)-27)</sup>。これによれば、任意の平面計画の建物について、建物の保有耐力が、耐力壁だけによ らず、各耐力要素の足し合わせによって簡便に得られるようになるとのことであるが、足し合わせる 値のデータベースの構築と実大実験による検証が不可欠であること、動的な検討が今だ不十分である こと、ともすれば保有耐力を稼ぐために、伝統的軸組構法のもつ変形性能を無視して、剛に過ぎる結 果になりはしないかとの危惧があること、といった今後解決すべき課題が残っている。

既存の木造住宅の耐震補強に関する研究も、阪神・淡路大震災を契機として増えつつある。例えば、 岩井<sup>28)</sup>は、狭小間口住宅の鉛直構面補強法の一つとして、現在では耐力壁として認められていない、 幅 90cm 以下の合板補強部をもつ有開口壁のせん断力載荷実験を行い、柱脚接合部をホールダウン金 物などで緊結すれば、開口がある場合にも大きな耐力を期待できることを明らかにし、更に、実際の 補強にかかる費用と併せて、費用対効果について示している。費用については、実験用の試験体を製 作するのにかかった費用であるので、現実的な金額ではないかもしれないが、建物全体の中で特に弱 点となっている鉛直構面を見いだし、そこを適切な方法で補強するのにどの程度の出費が必要なのか を明らかにすることは重要なことである。

後藤は、開口部を考慮した木造軸組の補強法の提案とその実験的検討<sup>29)</sup>を行い、阪神・淡路大震 災で被害の大きかった、間口が狭く開口が大きい住宅の補強方法の提案を行っている。

動的な研究としては、坂本らによる多度津の振動台を利用した実大木造建物の振動台実験<sup>30)</sup> や、 耐力壁に関する仮動的試験<sup>31),32)</sup>が行われており、建物や耐力壁の非線形挙動が明らかにされようと している。仮動的試験は、実際に地震時の挙動を解析的に求め、そのように変形が推移するように静 的に載荷を行う方法であり、数秒間の地震応答を数分から数時間かけて再現する静的な載荷実験方法 である。解析に用いられる復元力特性は、完全弾塑性型やバイリニア型、バイリニア型にスリップ特 性を加えたものがほとんどである。

## 1.3 本研究の目的と論文の構成

そのほとんどが住宅である木造建物の耐震性能を向上させ、大地震時の被害を軽減するためには、 力学的に裏付けられた構造設計手法の確立が急務である。それには、木造建物の静的及び動的な力学 特性を明らかにし、地震時の動的挙動と破壊現象の把握した上で耐震性能の評価尺度を策定すること が基本的に重要となる。上述のように、木造建物の耐震性に関する既往の研究は、動的な観点からの 取り組みは未だ少なく、主として静的な観点からの実験的、解析的な研究である。また、静的な実験 に基づいて木造建物全体あるいは構造要素の力学特性、特に復元力特性を評価するには、基礎資料と なるべき実験結果は十分とは言えない。従って、これら基礎資料の整備蓄積も不可欠である。

以上のような見地から、本研究は、木造建物の静的及び動的な挙動を解明して、木造建物の耐震性 能評価に結び付けることを目指している。先ず、静的な観点においては、在来構法木造住宅や実大耐 力壁の静的な耐震性能実験を実施して、木造建物の復元力特性及び破壊性状を把握して、重要な耐力 負担要素である耐力壁の力学特性を得ることとともに、耐震性能の評価法を再検討することを目的と している。次いで、動的な観点からは、在来構法木造住宅を対象に常時微動計測や自由振動実験を実 施して固有振動数、減衰定数及び初期剛性の評価を行い、更に静的実験結果に基づいて木造建物の復 元力特性など動力学モデルを構築して地震応答解析を介して、強震動下での挙動を明らかにすること を目的としている。

本論文は6章から成っている。第1章では、研究の背景、既往の研究と問題点、本論文の全体構成 について述べている。

第2章では、木造建物が静的水平力を受けた場合の復元力特性及び破壊性状を把握するために行っ た在来構法木造住宅4棟と実験用木造軸組構造1体の実大水平力載荷実験の概要と結果、ならびに、 同時に行った常時微動計測及び自由振動実験の概要と結果について述べる。水平力載荷実験の結果 については、木造建物の構造設計で現在用いられている壁量による耐力算定との比較検討を行う。一 方、木造軸組構造について、既往の軸組耐力壁実験の結果に基づいて検討を行う。

第3章では、在来構法木造住宅で多く用いられている耐力壁の耐震性能評価実験について述べる。 耐力壁は重要な構造要素であるにも係わらず、第2章で指摘しているように耐震性能は不明な部分が 多いため、ここでは、筋かい付木造軸組、竹小舞下地土塗り壁及びボード下地左官仕上げ壁について 実施した実大せん断載荷実験とその結果について述べ、定量的な再検討を行っている。特に、従来の 壁倍率による評価のみならず変形性能や履歴消費エネルギーについても考察する。

第4章では、構法や建設年代など多岐にわたる木造住宅の振動特性を把握するために京阪神地域の 木造住宅を対象に実施した常時微動計測について述べる。これらの木造建物の固有振動数及び減衰定 数の評価を行うとともに、重量算定に基づく初期剛性の評価法について述べる。常時微動計測が木造 建物の振動特性を評価するのに有効な簡便な手段であり、また、一例として、耐震補強工事を行った 住宅の補強効果を判断するためにも有効であることを示す。

第5章では、第2章、第3章の実験結果と第4章の常時微動計測結果に基づいて、一般的な2階建 木造住宅を対象に動力学モデルを構築し、実地震波による地震応答解析を行い、木造住宅の強震動下 での挙動を各層の最大層間変形角や第3章と同様、履歴消費エネルギーなどの耐震安全性の判定尺度 を用いて明らかにする。また、ベースシアー係数に着目し、応答との関連を示す。

第6章では、以上で述べた実験及び解析の結果得られた知見をまとめ、今後検討を進めるべき問題 点について述べる。

4

## 第2章 在来構法木造住宅の実大水平力載荷実験

1995年兵庫県南部地震による阪神・淡路大震災では、木造建物の被害が甚大であり<sup>3)-6),33),34)</sup>、全 壊及び半壊の建物は20万棟を越えている。この震災関連の死者は6千人を越え、戦後最大の人的被 害となった。また、多くの死者を出す最大の原因が家屋の倒壊によるものであった。

この阪神・淡路大震災から得られる教訓を活かして、災害に強い街づくりに取り組むことが大切で ある。とりわけ、都市住民の安全性に密接な影響を持つ木造住宅について、被害原因を究明し、耐震 性能の向上を図る耐震設計法や既存建物の補強法を確立するなどの耐震対策は重要かつ緊急の課題と 言える。

実大建物の耐震性を調べる目的で水平力載荷実験が行われている<sup>35)-39)</sup>が、在来構法の木造建物の 場合、建設年代や地域特有の構法の違いなどによって建物の復元力特性は大きく異なる可能性がある ため、構法別・年代別・地域別に耐震性能を詳細に把握することが木造建物の耐震対策をより強固に 進めるために重要である。

本章では、地震被害のあった西宮市や古い木造家屋の多い京都市において、在来構法木造住宅を対 象とした静的水平力載荷実験を実施し、建物が崩壊に至るまでの剛性・耐力と変形性能を把握するこ と、ならびに木造建物の耐震性能の評価法について考察することを意図している。

水平力載荷実験を行う前に常時微動計測と自由振動実験を、また、載荷実験後に可能な限り常時微 動計測を行い、これらの実験結果から、木造建物の静的・動的特性を明らかにし、更に今後、新築さ れる木造建物に対する合理的な耐震構造設計法や、既存の木造建物の耐震補強法を策定することを目 標としている。

本章では、木造建物の静的復元力特性を把握するために既存木造建物4棟と軸組架構1棟について 行った静的水平力載荷実験、常時微動計測及び自由振動実験について、実験の概要と結果について述 べる。また、従来の壁率に基づく木造建物の耐力と水平力載荷実験で得られた結果とを比較し、壁の 剛性、強度の評価法について考察した。最後に、軸組架構の建物全体の復元力特性を耐力壁の復元力 特性で表現することを試みた。

## 2.1 実験対象建物

実在する木造建物の耐力と変形性能及び振動特性を定量的に評価するため、解体予定の木造住宅4 棟、及び、実験用に建設した木造軸組1棟について、常時微動計測、自由振動実験ならびに水平力載 荷実験を行った。実験を行った建物の概要を表1に、平面図を図1から図5に示す。

図中●、■は、それぞれ重心、剛心を表す。重心は、各平面図から幾何学的に算定し、剛心につい ては、耐力壁の剛性の分布から、偏心距離を算定した。ここで、耐力壁の剛性は、壁率計算と同様の 方法で、1/120rad 変形時の耐力から求めた。即ち、耐力壁線毎に、耐力壁の有効長さ (m) を算定し

### 表1載荷実験に使用した建物

| 建物名称                  | SI 邸                        | TU 邸                        | TA 邸          | SU 邸                        | H 棟        |
|-----------------------|-----------------------------|-----------------------------|---------------|-----------------------------|------------|
| 実験日                   | 1995年6月20日                  | 1995年6月21日                  | 1995年10月2,13日 | 1995年12月6,7日                | 1995年10月6日 |
| 建設場所                  | 京都市左京区                      | 京都市左京区                      | 京都市山科区        | 西宮市六軒町                      | 京都市南区      |
| 建設年代                  | 昭和初め                        | 昭和初め                        | 昭和 30 年代後半    | 昭和 40 年                     | 平成7年(新築)   |
|                       | 1930 年代                     | 1930 年代                     | 1960 年代       | 1965 年                      | 1995 年     |
|                       | 2 階建在来軸組                    | 2 階建在来軸組                    | 2 階建在来軸組      | 2 階建在来軸組                    | 2 階建在来軸組   |
| 主体構造                  | 土塗壁 (貫3段、                   | 土塗壁 (貫3段、                   | 土塗壁 (筋かい、     | 土塗壁 (筋かい、                   | 二ツ割筋かい、    |
|                       | 竹小舞)                        | 竹小舞)                        | 竹小舞)          | 竹小舞)                        | もしくは貫 3 段  |
| 屋根仕上げ                 | 土葺き瓦                        | 土葺き瓦                        | 土葺き瓦          | 土葺き瓦                        | なし         |
| 外壁仕上げ                 | 土塗壁 (2 階半<br>分まで縦羽目板<br>張り) | 土塗壁 (2 階半<br>分まで縦羽目板<br>張り) | ラスモルタル        | ラスモルタル                      | なし         |
| 延べ床面積                 |                             |                             |               |                             |            |
| 1 階 (m <sup>2</sup> ) | 70.28                       | 94.57                       | 148.77        | 96.96                       | 12.96      |
| 2 階 (m <sup>2</sup> ) | 40.61                       | 52.86                       | 43.51         | 32.83                       | 12.96      |
| 計 (m <sup>2</sup> )   | 110.89                      | 147.43                      | 192.28        | 129.79                      | 25.92      |
| 載荷方法                  | 1方向繰返し                      | <ol> <li>1方向繰返し</li> </ol>  | 1方向繰返し        | <ol> <li>1 方向繰返し</li> </ol> | 正負繰返し      |

たものに 130kgf/m を掛けたものを剛性とした。但し、耐力壁の有効長さを算出する際、壁倍率として 2.4.2 節に示した倍率のうち () 内の値を用いた。平面図中の矢印は、載荷方向を表している。

昭和初期に建てられた2棟、SI邸(図1)とTU邸(図2)は、内外壁とも耐力壁は、3段貫・竹小舞 の土塗壁である。外壁の一部には、断面15×100程度の筋かい材が添えられており、2階中ほどまで 縦羽目板貼りされている。しかし、羽目板の多くに反りや割れなどを生じていた。内外壁とも耐力壁 を土塗壁(壁倍率0.5)として計算した壁率(表5、()内の値)は、現在の基準値を満たしていない。2 棟とも古い建物であるため、土台の一部に蟻害や腐朽が見られた。

昭和 30 年代後半に建てられた TA 邸 (図 3) は、外壁がラスモルタルであり、隅角部には筋かいも入っているが、建築基準法施行令第 46 条による 1 階壁率 (表 5、( )内の値) は、24~25cm/m<sup>2</sup> 程度であり、いずれも現在の所要壁率 33cm/m<sup>2</sup> を満たしていない。載荷のために一部壁仕上材を剥がしてみたが、構造材の腐朽はほとんど見られなかった。

西宮市六軒町の SU 邸 (図 4) は、1995 年兵庫県南部地震で「全壊」の被害認定を受けた建物であ る。昭和 40 年の建築である。特に、敷地を、南西から北東にかけて、斜めに横切って地盤に亀裂が 走っており、土台が基礎から横ずれしたり、一部陥没するなどの地盤変状により、鉄筋コンクリート 布基礎 (フーチング幅:40cm、基礎深さ:1.5m) も貫通するようなひび割れが生じている。建物は不同 沈下して、1 階壁にひび割れなどの被害が出ていた。また、柱が一部で土台から外れていたが、被害 調査時の被害レベル分類<sup>5)</sup> に従えば、建物の上部構造自体の被害は、中破レベルと見なされる。構造 材の腐朽は見られなかった。

H 棟 (図 5) は、1 ケ月間の屋外展示用並びに実験用に建設された軸組のみ (壁仕上げなし、構造合板の野地板のみで屋根仕上なし) の 3.6m × 3.6m 平面 (2 間×2 間) の 2 階建であり、貫構法と筋かい 構法との差異を調べる目的で、構面 a(図 5 の構面 4) が 3 段貫、構面 b(図 5 の構面 1) が二ツ割筋かい となっている。筋かいはベイマツ材を使用し、図 6 に示すように、突付けで、箱型金物で接合されて



図1SI邸平面図



図 2 TU 邸平面図





図 3 TA 邸平面図



図 4 SU 邸平面図



図5H棟軸組図



図6日棟筋かい接合部

いる。また、軸組の復元力特性を調べるために、2 台のクレーンによる正負繰返し載荷実験を行った。

## 2.2 実験の方法

小屋梁位置で隅柱部分を引っ張って静的な載荷を行い、載荷履歴に対する耐力と変形の関係を調べ、 最大耐力を越えて破壊に至るまでの挙動を調べることを意図した。図7、8に載荷及び計測の状況を 示す。

解体前の住宅4棟の実験では、図7及び8に示すように、載荷には、容量約25tonfのラフター型 トラッククレーンを用いて、建物全体に力が加わるように、載荷方向に対して奥側の2階小屋組の 柱-梁接合部分をワイヤーで引っ張り、1方向の繰り返し載荷を層間変形角で1/30~1/12rad 程度ま で行った。但し、建物の倒壊や、外周にある電線・電話線の切断などの、近隣への安全に対する配慮 から、載荷続行が危険であると判断した場合には、最大耐力に至る前においても載荷を停止した。

H棟の実験では、容量 7tonfのトラッククレーン2台を用いて、交互に引っ張って繰り返し載荷した後に、荷重計及び変位計を除去し倒壊するまで載荷した。

作用させた水平引張力は、容量 20tonf(定格出力 2000µ・精度 10kgf)の荷重計を1台用いて計測した。層間変形角及び層のねじれ変形を計測するため、図8に示すように土台、胴差し、軒げた (妻ばり)の位置で左右2点ずつ、計6点の変位を測定した。各点の変位は、図7に示すようにビティ足場を立て、容量 2500mm の巻き込み型変位計 (定格出力 5000µ・精度 0.5mm)を6台取り付けて計測した。また、変位の実験時モニタ用に、測定範囲 200~1300mmの超音波式変位センサ (非接触型変位計測、表示分解能 1mm、表示精度±1%F.S.)を2台用いた。変位計取りつけ状況を写真1に示す。

実験を行った住宅4棟のうち、3棟は壁量が多い桁行方向の載荷で、TA 邸のみが張間方向の載荷 であった。



図8載荷と計測の概要(H棟の場合)



写真1巻き込み型変位計と超音波式変位センサ

## **2.3 実験結果の考察**

載荷実験より得られた建物の変位は、図8に示されるように、6点の $d_{0a}$ 、 $d_{0b}$ 、 $d_{1a}$ 、 $d_{1b}$ 、 $d_{2a}$ 、 $d_{2b}$  である。これより、層間変位u、層間変形角 $\gamma$ 、及び、ねじれ変形角 $\theta$ を次式で求めた。

$$u_{1} = (u_{1a} + u_{1b})/2, \quad u_{2} = (u_{2a} + u_{2b})/2$$

$$u_{1a} = d_{1a} - d_{0a}, \quad u_{1b} = d_{1b} - d_{0b}$$

$$u_{2a} = d_{2a} - d_{1a}, \quad u_{2b} = d_{2b} - d_{1b}$$

$$\gamma_{1} = u_{1}/h_{1}, \quad \gamma_{2} = u_{2}/h_{2}$$

$$\theta_{1} = (d_{1a} - d_{1b})/s, \quad \theta_{2} = (d_{2a} - d_{2b})/s$$
(1)

ここで、 $u, \gamma$ 及び $\theta$ の添字1、2は、建物の1層、2層を、添字a, bは、それぞれ、図8に示した構面 a、bを意味する。また、 $h_1, h_2, s$ は、それぞれ、図8に示したように、計測点位置での階高、スパ ンを表す。但し、その構面で計測が出来ない場合にも、可能な限り近い位置で変形を計測したので、 (1) 式での計算では、 $h \approx s$ の補整を行わず、 $h_i = (h_{ia} + h_{ib})/2$  (i = 1, 2)のように平均値を用いた。 ねじれ変形角 $\theta$ は、構面 a 側の変形が大きくなる方向 (平面図で半時計回り)を正とした。床面の浮き 上がりなど、水平構面の面外変形は計測していない。ねじれ変形角の算定時には、水平構面は剛であ るとした。表2に、各建物でのh, sの値を示す。

基礎部の変位  $d_{0a}$ 、 $d_{0b}$ は、TU 邸を除く建物では最大荷重時で 3~4mm 程度であり、建物全体の 10~20cm という変形量に比べると小さい。TU 邸の場合には、1 階北東隅の基礎が浮くなどの損傷を 生じ、東側基礎部の変位  $(d_{0a})$  は最大荷重時で 13mm であった。

各建物の最大荷重  $P_{max}$ 、その時の層間変形角  $\gamma_{max}$ 、及びねじれ変形角  $heta_{max}$ 、顕著な破壊箇所を

**表 2** 計測機器間寸法 (cm) (図 8 の h と s)

| 建物名称 | $h_1$ | $h_2$ | s      |
|------|-------|-------|--------|
| SI 邸 | 225.0 | 275.0 | 475.0  |
| TU邸  | 230.0 | 265.0 | 583.7  |
| TA 邸 | 134.5 | 290.0 | 1064.0 |
| SU 邸 | 223.5 | 365.5 | 583.3  |
| H 棟  | 243.0 | 255.0 | 360.0  |
|      |       |       |        |

表 3 実験結果一覧

| 建物名称                         | SI 邸    | TU 邸    | TA 邸    | SU 邸     | H 棟       |
|------------------------------|---------|---------|---------|----------|-----------|
| 最大荷重                         | 8 1 2   | 10.72   | 10.58   | 1/18     | 1 73      |
| $P_{max}(tonf)$              | 0.12    | 10.72   | 10.56   | 14.10    | 1.75      |
| 最大荷重時                        |         |         |         |          |           |
| の層間変形角                       |         |         |         |          |           |
| $\gamma_{max}(rad)$          |         |         |         |          |           |
| 1層                           | 0.025   | 0.046   | 0.016   | 0.019    | 0.089     |
| 2 層                          | 0.061   | 0.034   | 0.050   | 0.032    | 0.074     |
| 最大荷重時の                       |         |         |         |          |           |
| ねじれ変形角                       |         |         |         |          |           |
| $\theta_{max}(\mathrm{rad})$ |         |         |         |          |           |
| 1層                           | 0.0112  | -0.0327 | -0.0002 | 0.0099   | 0.0301    |
| 2 層                          | -0.0046 | -0.0015 | -0.0004 | 0.0012   | 0.0351    |
| 顕著な破壊箇所                      | 2 階壁の破損 | 2 階壁の破損 | 2 階柱の折損 | 地震で被災 (大 | 1・2 階筋かいの |
|                              |         |         |         | 破)       | 引き抜けと圧縮   |
|                              |         |         |         |          | 座屈による折損   |

表3に示す。TU 邸及びH棟の他には、大きなねじれ変形を生じた建物はなかった。

水平力載荷実験を行った5つの建物の崩壊過程を荷重と層間変形の関係を中心にそれぞれ以下に述べる。

## 2.3.1 SI 邸

SI 邸 (図 1) の荷重–層間変位関係を図 9 に、荷重– ねじれ変形角関係を図 10 に、それぞれ示す。ここでは 1 層及び 2 層の層間変位 *u*<sub>1</sub>、*u*<sub>2</sub> と荷重 *P* の関係を示している。

荷重 2.5tonf(載荷ステップ番号#101)の段階で、まず 2 階の外壁が面外に膨らみだした。これは壁 の内部にある貫或いは間柱の面外変形によるものと考えられる。さらに、荷重を 3.0tonf に増加させ ると、1 階の外壁に取り付けられている板厚の薄い斜材の座屈による面外変形が生じ、建物の剛性が 低下し始めた。6.0tonf 載荷時 (#122) には土壁の亀裂が顕著になり、2 階の階段室と和室との境界の



図 10 SI 邸荷重-ねじれ変形角関係



写真2 SI 邸:2 階の間仕切り壁が外れた

北側の土壁が脱落し、7.5tonf 時には、写真2に示すように、この壁が軸組から外れた。その時点で は、剛性は初期剛性の1/4 程度に低下していた。最大荷重 8.1tonf に達した時 (#142)、層間変形角 は1層が1/40rad、2層が3/50rad であった。その後除荷を行ったが、除荷時の剛性は初期剛性に近 く、残留変形は、2層で15.7cm(変形角7/100rad) であった。再載荷時の剛性も除荷時と類似してお り、最終加力時の層間変位は2層で20.0cm(4/45rad) に達した。

静的載荷であることにもよるが、最大耐力を越えて、層間変形角が1/10rad 近くになっても倒壊は していない。近隣の状況から、これ以上の載荷は不可能と判断し、実験を終了した。翌日の朝、TU 邸の実験開始前に、特に2階の破壊状況を観察したところ、西側外壁となる土壁に、貫や立貫に沿っ てひび割れが発生していた (写真)。また、建物全体がねじれるように変形していたためか、2階の床 に敷かれていた畳が波打つようにうねっていた。1階部分も2階と同様、西側の土壁のひび割れを観 察することができた。



写真3 SI 邸:2 階の西側土壁のひび割れ

## 2.3.2 TU 邸

TU邸(図2)の荷重–変形関係を図11、12に示す。図11は、1層及び2層の層間変位と荷重の関係 を、図12は各層のねじれ変形角  $\theta_1$ 、 $\theta_2$ と荷重の関係をそれぞれ示している。この建物の場合、層間 変位(図11)、ねじれ変形角(図12)とも1層の方が大きかった。1階は特に建物の東側で壁が少ない ため、偏心が大きくなり、大きなねじれ変形を生じたものと考えられる。対照的に2階は偏心が小さ く、ほとんどねじれ変形を生じなかった。最大荷重は10.7tonf、その時の層間変位は、1層で12.2cm、 2層で7cmであった。

荷重 2.0tonf(#36)の段階から、木材接合部のきしみ音や土壁のちり部分でのわずかな崩れが顕著 であった。5.4tonf(#70)の段階では、土壁の亀裂や崩れが目立つようになり、剛性の低下が認められ る。荷重 6.2tonf(#77)の段階になると、一部で壁土が大きく崩れ落ちたり、壁と軸組の間の隙間が、 目に見えて大きくなってきた。その時の層間変形角は、1層で 3/250rad、2層で 1/147rad であった。

一旦除荷し、再載荷したところ、8.0tonf(#149)で、1 階和室の障子紙の破れが観察されるようにな り (写真 4)、続いて荷重を増加させると、1 階東側の縁側にあるガラス戸のガラスが割れ始めた。こ れは、軸組の変形にともない、軸組と建具の間の隙間がなくなり、建具に直接力が加わるようになっ たためであると考えられる。さらに荷重を増加させると、9.1tonf(#155)で、外壁に取り付けられて いる板厚の薄い筋かい材 (それまでにすでに座屈して面外に変形していた)が外れて落ちて、再び剛 性の低下が認められた。この時点で剛性は初期剛性の約 1/4 に低下している。

最大荷重 10.7tonf に達した時 (#163) の層間変形角は、1 層が 1/22rad、2 層が 1/29rad であった。



図 12 TU 邸荷重-ねじれ変形角関係



写真4 TU 邸:1 階東南側和室の障子

荷重はまだ上昇する傾向を示していたが、特に1層のねじれ変形が大きく、隣接建物に接触する危険 性があったため、載荷を終了し、除荷を行った。SI邸と同様、除荷時の剛性は初期剛性に近く、残留 変形は1層で層間変位 8.2cm(層間変形角で約1/32rad)であった。途中の再載荷時の剛性も除荷時と 類似している。

## 2.3.3 TA 邸

1 層及び 2 層の層間変位と荷重の関係を図 13 に、ねじれ変形角と荷重の関係を図 14 に示す。最大 荷重は 10.6 tonf、その時の層間変形は 1 層で 4.6 cm(約 1/50 rad)、 2 層で 6.7 cm(約 1/40 rad) であった。

本建物 (図 3) は、もともと内外壁ともに土壁であったが、増改築時に1階部分は洋風スタイルに改 装されたため、各部屋がしっかりした間仕切り壁で区画されており、載荷方向 (張間方向) の1階の 壁量は比較的多い。そのため、1階部分の水平耐力は2階部分よりも相当大きいと考えられた。対し て、2階部分は床面積が1階の約1/3であり、壁量も1階に比べると少ないので、2階部分の水平耐 力は1階部分よりも相当小さいことが予想された。事実、載荷途中の顕著な破壊状況は2階部分に集 中していた。

荷重 3.0tonf(#42) 付近で室内の作りつけの棚が落ちるのが観察された。6.8tonf(#109) で屋根の 歪みが認められた。また、そのころから外壁のモルタルのひび割れが目立ちはじめ、10.3tonf(#189) で、外壁の一部で剥離が生じた。最大荷重 10.6tonf(#193) に達して間もなく 2 階南東の隅柱が折れ (写真 5)、9.9tonf(#207) に耐力が低下した時点でその柱が外れてしまった。それまではほとんどねじ





写真5 TA 邸:2 階南東の隅柱が折れた

れ変形を生じていなかったが、柱が1本外れた直後、1/120rad 程度のねじれ変形を生じた。残留変 形は1層で 3.0cm(1/100rad)、2層で 4.5cm(1/30rad) であった。

### 2.3.4 SU 邸

西宮市六軒町の SU 邸は、実際に 1995 年兵庫県南部地震で被害を受けた建物である。建物自体の 損傷は、一部で柱が土台から外れている程度で、筆者らの行った被害調査時の被害レベル分類<sup>5)</sup> に従 えば中破であったが、敷地を斜めに横切って亀裂が走り、1 部陥没するなどの地盤変状により、鉄筋 コンクリート布基礎 (フーチング幅:40cm、基礎深さ:1.5m) に亀裂が生じ、全体的に沈下していた。

図 15 に、1 層及び 2 層の層間変位と荷重の関係を、図 16 に、1 層及び 2 層のねじれ変形角と荷重の関係を示す。他の 3 棟の住宅と同様、まず室内の棚が外れるといった状況が目立ったが、その他には木材のきしむ音や地震によって生じた外壁の亀裂の進行が顕著であった。最大荷重は 14.2tonf、その時の層間変位は 1 層で 6.8cm(1/54rad)、2 層で 7.3cm(1/31rad) であった。

他の3棟の住宅と同様、まず室内の棚が外れるといった状況が目立ったが、その他には木材のきし む音や地震によって生じた外壁の亀裂の進行が顕著であった。

最大荷重に達しても大きな剛性の低下は見られなかったため、建物に余力が残っていると考えられ たが、荷重の増加を止めても被災により生じていた外壁の亀裂が進行していたので、倒壊に対する安 全に配慮してこの時点で載荷を終了した。実験終了時の残留変形は層間変形角にして1層で1/130rad、 2層で1/61rad であった。

本建物のように被災した建物がどの程度の耐力と変形性能を有しているかを調べることは重要と考えられる。したがって、水平力載荷によって建物の被災箇所の状況変化に注目して、建物全体の損傷





写真6H 棟載荷状況

状況を観測した。地震による被災損傷との関連では、被災箇所、特に外壁の亀裂が水平載荷により早 く進行するなどの状況が見られたが、建物の耐力との関連は、水平載荷の方向(桁行方向)が地震時 に大きく揺れたであろう方向(張間方向)と異なるため、明確には把握できなかった。

## 2.3.5 日棟

H 棟 (図 5) では、写真 6 に示すように、2 台のクレーンを用いて正負繰り返し載荷を行い、復元力 特性を調べた。載荷荷重 1.0tonf まで載荷したのち、−0.7tonf まで逆方向の載荷を行うことを 3 度繰 り返し、それ以後破壊が生じるような変形になるまで単調載荷した。更に、変位計の計測限度まで載 荷したのち、荷重計及び変位計を除去して倒壊するまで載荷した。

図17に層間変位と荷重の関係を示す。1層と2層が同じ軸組で構成された総2階建であるので、1、 2層の層間変位に大きな差はなく、構面全体がせん断変形を生じている。

筋かい構面及び貫構面で剛性が大きく異なるため、図 19、図 20 に示す荷重と両構面の各層間変位 との関係から見て取れるように、両構面の層間変位が大きく異なり、図 18 に示すように大きなねじ れ変形を生じていることがわかる。繰り返し載荷途中の復元力特性にはスリップ特性が顕著に見ら れる。

柱はほとんど曲げ変形をせず、柱と胴差しとの接合部が緩み、徐々に隙間が開いていき、構面全体 がせん断変形を生じた。貫構面は大きく変形するものの大きな損傷はなく、一方、筋かい構面は大き な力が加わり、まず圧縮筋かい、次いで引張筋かいが損傷した。

図 17 において、荷重 1.46tonf(#105)の段階で1階の圧縮筋かいが座屈により面外に大きく変形し、 筋かいを止めていた間柱が割れた (写真 7)。





次いで、荷重 1.66tonf(#111) では、2 階の圧縮筋かいが同様に座屈し間柱が割れたのち、筋かいも 折れた (写真 8)。

この圧縮筋かいの破断直後には、強度は約 500kgf 低下した。その後、荷重 1.73tonf(#114) では 1 階引張筋かいの下端部 (柱・土台との接合部、図 5 の立面 1、〇印) で金物を留めていた釘が抜け出し て接合部が外れた (写真 9)。

この時点 (#114) で最大耐力 1.73tonf となり、その時層間変形角は1層で 9/100rad、2層で 7/100rad であった。この直後に耐力は急激に低下し、変形も大きく増加した。さらに載荷を続けると、荷重 1.5tonf(#119) では1階の圧縮筋かいが破断し、更に約 500kgf 耐力が低下した。

さらに載荷を続け、step119(荷重 1.54tonf) では1階の圧縮筋かいが座屈により折れた (写真 10)。

筋かいのない構面は大きく変形するものの大きな損傷はなく、一方、筋かいのある構面は大きな力 が加わり、まず圧縮筋かい、次いで引張筋かいが損傷した。

その後、変位計を除去し、更にクレーンで引っ張ったところ、構面全体は平行四辺形を保ったまま 倒壊した (写真 11)。



写真7H棟: step105 で間柱が折れた



写真8H棟: step111で2階の圧縮筋かいが折れた



写真9H棟:step114で1階引張筋かいの下端部で接合部が外れた



写真10日棟:step119で1階の圧縮筋かいが折れた



**写真 11** H 棟: 倒壊する様子

#### 2.4 荷重-変形関係に関する考察

#### 2.4.1 建物重量の算定と層せん断力係数の評価

本研究では、建物全体としての耐力評価に主眼を置いているので、実験時の最大耐力と層せん断力 係数に注目する。

日本建築学会の『建築耐震設計における保有耐力と変形性能 (1990)』<sup>38)</sup> に基づいて、2 階の重量  $w_2$ は、小屋組を含む屋根重量、2 階天井部分及び2 階壁の上半分の重量を加えたものとし、1 階の重量  $w_1$ は、2 階壁の下半分と、2 階床、下屋及び1 階壁の上半分の重量を加えたものとした。仕上げ材の 状況に応じて推定した各部の単位重量 <sup>40)</sup> に基づいて得られた建物重量  $W = w_1 + w_2$  を表4 に示す。 なお、実験時の対象建物は、家具・調度品が全て除去された状態であったので、建物重量算定におい て積載荷重を考慮していない。本実験のような載荷方法では、各層に作用するせん断力が一定になる として、載荷実験での最大荷重  $P_{max}$ (表3) から各層の層せん断力係数を求めて表4 に示す。

| 建物名称                     | SI 邸 | TU邸  | TA 邸 | SU 邸 |
|--------------------------|------|------|------|------|
| 重量 (tonf)                |      |      |      |      |
| $w_2$                    | 8.1  | 10.0 | 10.0 | 7.6  |
| $w_1$                    | 11.0 | 13.3 | 30.3 | 18.6 |
| W                        | 19.1 | 23.3 | 40.3 | 26.2 |
| 2 層せん断力係数 C <sub>2</sub> | 1.00 | 1.07 | 1.06 | 1.87 |
| 1 層せん断力係数 C <sub>1</sub> | 0.43 | 0.46 | 0.26 | 0.54 |

表4住宅4棟の重量、最大荷重時層せん断力係数

各実験の荷重–変形関係を無次元量で表したものが、図 21 である。図 21 の横軸は 2 階の層間変形 角 (rad)、縦軸は 2 層せん断力係数  $C_2$  である。2 層で破壊が起こった SI 邸及び TA 邸の 2 層せん断 力係数  $C_2$  と層間変形角  $\gamma_{2max}$  の関係はほぼ一致しており、最大荷重時の  $C_2$  及び  $\gamma_{2max}$  も表 3、4 に 示されるように、近い値となっている。

TU 邸は1層の変形が大きく、2層では破壊に至っていないので、2層せん断力係数はわずかに上昇 傾向を示しており、最大荷重時の変形角 γ<sub>2max</sub> も約 1/30rad と小さい。SU 邸は 1995 年兵庫県南部 地震により被災しているにも係わらず、実験時には顕著な破壊が見られず、耐力も上昇傾向を示して いた。2層について、変形角と層せん断力係数の関係を見ても、その傾向は変わらず建物が余力を残 していることが窺われる。

TA 邸の最大荷重時のベースシアー係数 *C*<sub>1</sub> が 0.26 と他の 3 棟に比べて小さいが、これには次のような原因が考えられる。(1)TA 邸の場合、最大荷重は耐力の小さい 2 層で決まっているため、最大荷重そのものが小さい。また、(2) 建物全体の重量が大きい (表 4)。



図 21 ベースシアー係数と2階の層間変形角の関係

#### 2.4.2 壁率と建物耐力の関係

現行の建築基準法に取り入れられている「壁量計算」による耐震設計方法は、次式が成り立つよう に耐力壁の種類と長さを決めるものである。

$$\beta A \le \sum \alpha l \tag{2}$$

ここで、 $\beta$ は所要壁率 (cm/m<sup>2</sup>)、Aは床面積 (m<sup>2</sup>)、 $\alpha$ は耐力壁の種類によって定められる壁倍率、lは耐力壁の実長である。壁倍率  $\alpha$ は次式で与えられるものとする。

$$\alpha = P_{1/120}/130 \tag{3}$$

ここで、*P*<sub>1/120</sub> は耐力壁の見かけの変形角が 1/120rad 時の単位長さ当たりの抵抗力 (kgf/m) であり、 130 は大貫筋かい付壁の 1/120rad 変形時の抵抗力 (kgf/m) である。

各住宅の平面図に基づき、耐力壁の種類、長さを求め、壁の種類に応じて壁倍率を以下のように定 めた。但し、実際の壁は、建築基準法施行令第46条で壁倍率を規定されている壁とは異なるものも あるので、規定値と近い値を仮定した。また、小壁や腰壁は本来非耐力部分とされ、「水平荷重の1/3 を非耐力部分が負担する」と壁率決定の際に規定されている。非耐力壁に関する資料が不充分なた め、(3) 式のように無開口壁の壁倍率を考え、非耐力壁について、同種の無開口壁の1/2の壁倍率を 仮定する。よって算定上の壁倍率を全建物に共通に、内壁の土壁については1.0(施行令第46条に基 づくと0.5)、腰壁及び小壁についてはそれぞれ0.5(同じく0)とした。建設年代の古いSI邸とTU邸 では、外壁の土壁の壁倍率を1.0(同じく0.5)、外壁に一部取り付けられている薄い筋かいを1.5(同じ く1.0)、羽目板を1.0(同じく0)とし、年代の新しいTA邸とSU邸では、筋かいを含む外壁を2.0(同 じく1.5)とした。このようにして得られた有効壁長さ(cm)を床面積(m<sup>2</sup>)で割って壁率(cm/m<sup>2</sup>)を 算定した。各住宅の桁行方向及び張間方向の壁率を各階について表5に示す。

|      | 1階         |            | 2 階        |             |
|------|------------|------------|------------|-------------|
|      | 張間方向       | 桁行方向       | 張間方向       | 桁行方向        |
| SI 邸 | 32.6(16.9) | 66.4(22.3) | 40.8(14.0) | 106.4(31.6) |
| TU邸  | 18.1(7.6)  | 31.3(13.4) | 19.7(9.9)  | 43.5(15.8)  |
| TA 邸 | 38.4(25.0) | 39.8(23.8) | 28.3(13.6) | 82.3(44.8)  |
| SU 邸 | 22.6(11.0) | 49.0(23.4) | 45.9(23.7) | 77.5(31.0)  |
| 所要值  | 33         |            | 21         |             |
|      |            |            |            |             |

表 5 実験対象住宅 4 棟の壁率 (単位:cm/m<sup>2</sup>)

表中()は建築基準法施行令第46条に基づく壁率

この壁率から載荷方向の 2 層の層間変形角が 1/120rad 時の耐力  $P_{1/120}^*$ (kgf) を (3) 式から得られる 式、 $P_{1/120}^* = 130 A\beta$  (A: 床面積、 $\beta$ : 壁率) で求めると、SI 邸は 5.6tonf(実験結果では 5.6tonf)、TU 邸は 3.0tonf(同じく 6.6tonf)、TA 邸は 1.6tonf(同じく 4.8tonf)、SU 邸は 3.3tonf(同じく 6.5tonf) と なり、SI 邸の他は壁率から算定した耐力と実験結果の耐力との間で 2–3 倍の差がある。

## 2.5 ねじれ変形を考慮した復元力特性の推定-H棟の場合-

H 棟はねじれ変形を意図して建設した実験用軸組で、構面 a は 3 段貫、構面 b は金物補強二ツ割筋かいとなっている。ここでは、平嶋らの行った壁体の実験データ<sup>41)</sup>を使って H 棟の復元力特性を推定する。

構面 a、b は構法が異なるので、変形に応じた抵抗力もそれぞれ異なる。任意の変形時の載荷荷重 *P* は構面 a、b それぞれのその時の変形に対応する抵抗力 *Pa*、*Pb* の和になっていると考えられるの で次式が成り立つ。

$$P = P_a + P_b \tag{4}$$

ここで、Pa、Pb はそれぞれ構面 a、bの抵抗力を表す。

3 段貫、金物補強筋かい耐力壁の一定変形角時の耐力 (文献 41、Table2,Test frame No.11) から、式 (4) を用いて P を算定し、H 棟の筋かい構面について荷重と層間変形角の関係を描くと、図 22 のよ うになる。ここでは、載荷荷重に対する貫構面、筋かい構面の変形が図 19、20 のように得られてい るので、その変形に対応する各構面の抵抗力を文献 41 の表から算定し、それぞれ Pa、Pb とした。

図中の実線は、実験結果のうち2層の荷重と層間変形角の関係の包絡線であり、+ は推定値であ る。参考にしたデータの個数が限られているため実験結果の最大耐力まで計算することは出来なかっ たが、推定値は実験結果とほぼ一致する曲線を描いていることがわかる。


図 22 H 棟の筋かい構面-実験結果と計算値の比較

# 2.6 常時微動計測

在来構法木造建物の基本的な動力学特性を把握し、かつ、建物が損傷を受けることにより生じる動 特性の推移を明らかにするため、破壊実験前後に常時微動測定を行い、5つの木造建物に関して速度 記録のフーリエスペクトルを求めた。

微動計測による速度波形を図 23-24 に、フーリエスペクトルを図 25-33 に示す。 常時微動のフーリエスペクトルは、

1. 観測波形の全体のうち比較的波形の安定した 1024 点の区間を数ヶ所 (10-20ヶ所) えらび、

2. その各々でスペクトル解析を行い、

3. 平均をとった後、

4. Parzen のスペクトルウィンドウを用いて平滑化して

求めた<sup>42)</sup>。別に、自由振動実験を行ったので、常時微動から減衰を求めることはしなかった。TU 邸 については、時間の関係で破壊実験後の常時微動測定を行うことができなかった。破壊実験前後の各 建物の1次固有振動数および2次固有振動数を表6に示す。

5 棟の建物について、破壊実験前の常時微動の振幅をフーリエスペクトルのピーク値で比較する。 SI 邸、TU 邸は隣接しているため、ほぼ等しい地盤条件であり、また、建築時期も同じである (昭和 初め) ため、0.7–0.8mkine-sec 程度である。TA 邸は 0.3–0.35mkine-sec、SU 邸は 4.5mkine-sec、H 棟 は 3.5mkine-sec であり、立地条件による常時微動の振幅レベルの違いが見られる。

TU 邸以外の4棟について破壊実験前後の載荷方向の1次固有振動数の推移を見ると、SI 邸では 17.8 %、TA 邸では17 %、SU 邸では5.6 %、そして、H 棟では18.5 %の1 次固有振動数の低下が見 られる。このことからも、SU 邸はまだ相当の余力を残していただろうと考えられる。



図 24 SI 邸小屋梁位置の常時微動波形 (破壊実験後)





図 27 常時微動フーリエスペクトル TU 邸 (破壊実験前)

表6破壊実験前後の各建物の固有振動数(Hz)

a. 1 次固有振動数

|      | 実馬        | <b>検前</b> | 実験後  |      |  |  |
|------|-----------|-----------|------|------|--|--|
|      | 張間方向 桁行方向 |           | 張間方向 | 桁行方向 |  |  |
| SI邸  | 2.44      | 3.81      | 2.05 | 3.13 |  |  |
| TU邸  | 2.44      | 3.01      | —    | _    |  |  |
| TA 邸 | 4.00      | 4.69      | 3.32 | 5.18 |  |  |
| SU邸  | 2.83      | 3.52      | 2.83 | 3.32 |  |  |
| 日棟   | 2.83      | 2.64      | 2.73 | 2.15 |  |  |

b. 2次固有振動数

|      | 実懸    | 検前    | 実験後  |      |  |
|------|-------|-------|------|------|--|
|      | 張間方向  | 桁行方向  | 張間方向 | 桁行方向 |  |
| SI 邸 | 5.57  | 12.90 | 4.98 | 7.23 |  |
| TU邸  | 5.76  | 9.08  | —    | —    |  |
| TA 邸 | 12.50 | 9.77  | 8.89 | 9.47 |  |
| SU邸  | 6.84  | 8.98  | 6.84 | 7.91 |  |
| Η棟   | 8.59  | 8.40  | 6.64 | 6.54 |  |







芦屋市内や神戸市内などで、倒壊を免れた木造住宅を対象に、常時微動測定を行った<sup>8),9)</sup>。これらの木造建物の桁行方向の1次固有振動数は、5.9Hzから11.0Hzと高い固有振動数を持っていることがわかっている。これらの建物の被災前の振動特性は不明であるが、今回実験を行った建物、特に京都市内の建物、の健全な状態における桁行方向の1次固有振動数は3.0Hzから4.7Hzであり、神戸や芦屋で被災した建物より低い固有振動数であるから、兵庫県南部地震レベルの地震動を受けた場合には、相当の被害を受けることが予想される。

#### 2.7 自由振動実験

SI 邸の自由振動実験から得られた速度波形の一部を、図 34 に示す。初期変位は測定していないため正確ではないが、速度振幅レベルは常時微動時の 100 倍程度である。



自由振動実験の速度波形のフーリエスペクトルを図 35-39 に示す。フーリエスペクトル図から得ら れる1次固有振動数を表7に示す。この実験では SI 邸と SU 邸で明確なねじれ振動は観測できなかっ



図 36 TU 邸自由振動フーリエスペクトル







図 39 H 棟自由振動フーリエスペクトル

た。この2邸の場合、自由振動させた方向 (=加力方向) について偏心が小さいことがその一因である と考えられる。これらの波形から対数減衰率を用いて求めた各建物の減衰定数を併せて表7に示す。 芦屋市内や神戸市内などで倒壊を免れた木造住宅を対象に行った常時微動測定からハーフパワー法に より得られた建物の減衰定数は3.9%から5.8%であったから<sup>9)</sup>、本研究における実験対象建物の減衰 は、それに比べると大きい。

|      | 並進   | ねじれ  | 減衰定数    |
|------|------|------|---------|
| SI 邸 | 3.91 |      | 5.4-6.0 |
| TU邸  | 2.15 | 3.13 | 5.9-8.5 |
| TA 邸 | 3.71 | 4.59 | 4.6-6.2 |
| SU 邸 | 3.13 |      | 7.5-8.0 |
| 日棟   | 2.05 | 2.54 | 3.0-6.5 |

表 7 自由振動実験から得られた 1 次固有振動数 (Hz) と減衰定数 (%)

# 2.8 3種の実験結果の関連について

第2.4節で算定された建物重量 w<sub>1</sub>, w<sub>2</sub> を用いて固有値解析を行い、常時微動測定および自由振動実 験から得られた建物の1次および2次の固有周期と一致するように各層の載荷方向の剛性 k<sub>1</sub>, k<sub>2</sub> を定 める。各実験対象建物の破壊実験前と破壊実験後の各層の剛性を算定して剛性の低下率を求めると、 20-30%である (表 8)。ただし、TA 邸の場合は、載荷用にワイヤーをかけていた柱が折れたため、大 きく剛性を減じているものと考えられる。

|      | 破壞実   | 、験前   | 破壞実   | <b>ミ験後</b> | 剛性の低  | 下率 (%) |  |
|------|-------|-------|-------|------------|-------|--------|--|
|      | $k_1$ | $k_2$ | $k_1$ | $k_2$      | $k_1$ | $k_2$  |  |
| SI 邸 | 12.09 | 5.13  | 9.94  | 4.22       | 17.76 | 17.77  |  |
| TU邸  | 9.47  | 4.06  | _     | _          | —     | _      |  |
| TA 邸 | 27.01 | 6.70  | 18.96 | 4.70       | 29.80 | 29.81  |  |
| SU邸  | 14.22 | 4.12  | 12.89 | 3.73       | 9.35  | 9.36   |  |
| 日棟   | 0.16  | 0.09  | 0.11  | 0.06       | 31.41 | 31.11  |  |

表8破壊実験前後の常時微動測定の結果により算定される剛性

常時微動測定により求められた建物の1次および2次の卓越振動数と表4に示される各層の重量を 用いて、2 質点系の固有値解析を行って、各層の剛性 $k_1, k_2$ を推定した。この結果 SI 邸の場合、 $k_1 =$ 12.088,  $k_2 = 5.132$ (tonf/cm)と求められ、破壊実験の荷重~変位関係から得られる $k_2 = 5.58$ (tonf/cm) との差は、実験の計測誤差を考えると妥当であろう。

自由振動の場合は卓越振動数が常時微動の時より小さくなる傾向がある。1 次モードが常時微動の それと等しいと仮定して固有値解析を行うと、剛性がおよそ 15–30%低い値で算定される。例えば TU 邸の場合、*k*<sub>1</sub>, *k*<sub>2</sub> はそれぞれ、(1) 常時微動から、9.47,4.06、(2) 自由振動から、6.44,3.48(tonf/cm) と求められる。

ただし、木造建物の設計の自由度、建設年代などによる劣化の程度や測定誤差もあり、また、計測 データ数も少ないため、以上の結果から任意の木造建物の振動特性を一般的に論じることは困難で ある。

常時微動と自由振動の相関性を定量的に把握し、実験計測から得られる動特性と設計図書から算定 される動特性との相関などを明らかにするためには、これらの実験・計測を実在の建物について行う とともに、部分架構の静加力実験、実大あるいは縮小模型による振動台実験などを通じて微小振幅レ ベルから崩壊レベルまでの動特性の推移や架構および接合部の復元力特性を明らかにする実験を実施 してデータの蓄積をはかるとともにこれらを推定し得る解析手法を開発していく必要がある。

# 2.9 まとめ

木造住宅の復元力特性や破壊性状、固有振動数ならびに減衰定数を把握するために、既存の木造住 宅と実験用に建設された木造軸組について、水平力載荷実験、常時微動計測及び自由振動実験を行 い、実験の概要と結果、ならびに若干の解析について述べた。本章で得られた成果をまとめると次の ようになる。

44

- 最大耐力時の層間変形角 γ<sub>max</sub> は 1/60rad~1/20rad の範囲にあり、平均 1/30rad であった。耐力壁が土塗壁である古い建物とラスモルタル壁である比較的新しい建物で γ<sub>max</sub> を比較すると、古い建物の方が大きくなっており、土塗壁が大変形を生じていることがわかる。
- 最大耐力時のベースシアー係数は、昭和初期に建てられた2棟で0.43~0.46、昭和40年に建てられた1棟で0.54と、桁行方向に載荷したものはいずれも比較的高い値を示している。それに比べて、張間方向に載荷した1棟は0.26と低いが、これは2.4.1節でも述べたようにこの建物の特殊性が影響していると考えられる。
- 軸組のみのH棟のような単純な構造であれば、対応する実験データから建物の耐力等を算定可 能であるが、一般には、各種の耐力壁の復元力特性や壁率算定に取り入れられない非耐力壁、 非構造要素の寄与が不明であるため、建物の耐力を有効壁長さや壁倍率などから算定するのは 困難である。そのため、各種の耐力壁や開口を含む壁などの復元力特性に関する実験データを 蓄積し、建物全体の復元力特性を評価する方法を開発する必要がある。
- 実験対象木造建物の1次固有振動数は、水平力載荷実験前には、桁行方向で3.0~4.7Hz、張間方向で2.4~4.0Hzであり、載荷実験後にはそれが6~18%低下した。
- 減衰定数は、4.6~8.5%の範囲であった。
- 固有値解析により算定された剛性は、水平力載荷実験結果から得られるものと大きく違わない。
- 損傷により、各層の剛性が18~30%程度低下した。

# 第3章 木造耐力壁の耐震性能

通常、木造建物の構造設計は、建築基準法施行令第46条に規定される壁量計算のみである。第2章 の結果からも明らかなように、壁量計算だけで構造設計とするのは適当ではなく、建物全体の復元力 特性や破壊規範を考慮して、構造計画や構造設計を行うべきである。建物の耐力負担要素として、耐 力壁の果たす役割は大きい。したがって、各種の耐力壁の復元力特性について、耐力と変形性能など の基礎的な資料を得るために一定の方法で実験を行うことは、今後も重要である。

現在の壁量計算の基準となっている壁倍率は、戦前から昭和 20 年代に行われた実験が基になって いることもあり、幾度か改訂されているとは言え、そこに記載されている耐力壁の種類は限られてお り、現在の実情を反映しているとは言い難い。さらに、近年増加している金物による補強を施した壁 体や一部開口を含む壁体についての考慮がなされていないため、各種の耐力壁について、壁倍率につ いて再検討が必要である。

更に、壁倍率のみにとらわれない設計法のためには、大変形に至るまでの破壊過程や復元力特性を 定量的に把握する必要がある。そこで、以下に述べる実験では、可能な限り、層間変形角 1/10rad 程 度まで変形させるような載荷を行っている。

# 3.1 筋かい付き木造軸組

木造建物の耐震性を確保あるいは向上させるには、構造要素として壁の耐力や変形性能を把握する ことが重要である。特に、木造軸組構法建物において、建物の水平耐力を確保するために筋かいを使 用することは一般化しているが、その接合方法は多岐にわたり、個々の仕様に対する性能評価基準は 明確には規定されていない。多くの接合方法の中で、金物による補強は簡易かつ確実な方法であり、 建物の耐震性を向上させるためにも今後一層利用されるものと考えられる。

本実験は、軸組構法の筋かい壁において、引っ張り筋かいの端部留め付け方法が耐力壁の水平せん 断耐力及びせん断変形性能にどのような影響を及ぼすかを三ツ割筋かいの場合について実験を行い、 壁倍率の評価及び筋かいの荷重負担割合の検証を目的としている。

# 3.1.1 実験の概要

土台、柱、桁および筋かいとして、スギ (平均比重 0.45, 平均含水率 17.8%) とベイマツ (平均比重 0.53, 平均含水率 15.6%) を用いた。1 試験体内の柱、土台、桁、筋かいには同一樹種を用いた。筋か い端部の留め付け金物として、2 倍用ガセットプレート (以後、箱形金物) 及びブレースプレート (以 後、プレート金物) を用いた。筋かい金物の仕様を表 9 に示す。試験体の一覧を表 10 に、軸組図を図 40 に、筋かい金物の接合詳細を図 41 に示す。 筋かい壁の試験体の軸組は、断面 105mm × 105mm の材に短ほぞ加工をして組み立て、接合部に はホールダウン金物 (HD-N15) を取りつけて緊結したものである。図 42 に、ホールダウン金物の形 状を示す。この軸組内部に、突き付けで断面 105mm × 30mm の筋かいを入れ、上記の筋かい金物に より軸材と接合した。壁幅が柱心々で 910mm(1P) と 1820mm(2P) の 2 タイプの壁体を製作した。

筋かい付の壁体は、樹種、壁幅の組を一つの条件として、各条件6体ずつとした。単調載荷2体、 1方向繰り返し載荷2体、正負繰り返し載荷2体として、JIS A1414 に従い、タイロッドなし無載荷 の面内せん断試験を行った。また、比較のために、筋かいなしの軸組のみの壁体について、1方向繰 り返し載荷の水平せん断試験も行った。

表 10 の試験体名称は、実験時の記号で順に、金物種類 (箱形金物は A、プレート金物は B)、樹種 (スギは S、ベイマツは M)、試験体の幅 (910mm は 1、1820mm は 2)、載荷方法 (単調載荷は M、1 方向繰り返し載荷は C、正負繰り返し載荷は R) であることを表している。末尾の 1、2 は、金物、寿 種、幅、載荷方法の組合わせが同じ試験体の 1 体目か 2 体目かということを表している。

|      | 箱形金物                                                                  | プレート金物                                     |
|------|-----------------------------------------------------------------------|--------------------------------------------|
| 材質   | JIS-G-3131 SPHC                                                       | JIS-G-3302 SGHC                            |
| 表面処理 | クロメートめっき                                                              | Z27                                        |
| 付属金物 | スクリュー釘 (FSN60F-10<br>本)、太め釘 (FN45-8 本)、<br>丸座平頭ボルト (M12 ナッ<br>ト付-1 本) | パーティクルボードビス<br>$\phi 5.5 \times 45 = 15 本$ |
| 承認等  | Zマーク同等認定                                                              | Z マーク同等認定品                                 |

表9筋かい接合金物仕様(メーカーカタログによる)

#### 3.1.2 試験結果

#### 荷重と変形の関係

図 43~46 に、箱形金物の場合の載荷荷重と見かけの変形角の関係を示す。また、図 49 に、試験体 の幅、樹種、筋かい金物ごとに、載荷方法の違い及び筋かいの有無による復元力特性の違いを示す。 箱形金物による留め付けの場合、壁幅 1P では荷重計を取り付けるために筋かい中央部に遊びがで きたせいか、筋かいが利き始めるまでに壁体の変形が進行するものもあった。その間の荷重 – 変形関 係は筋かいのない軸組のみの荷重 – 変形関係に一致している (図 49(a))。このことは図 50~51 に示 す載荷荷重と筋かい軸力との関係にも現れている。即ち、図 50(a) では、載荷荷重が 50kgf を越えて 初めて筋かいの軸力の上昇が見られる。しかし、同様に筋かい中央部を切断して荷重計を取り付けて いるにも拘わらず、プレート接合の試験体及び壁幅 2P の試験体ではこのような現象は見られなかっ た。載荷荷重と筋かい軸力の関係も比例関係になっている (図 50(b)、51(a)、51(b))。載荷荷重と筋

# 表 10 筋かい付木造軸組試験体一覧

| 試験体名称  | 幅<br>(mm) | 高さ<br>(mm) | 樹種 | 接合金物   | 試験体名称  | 幅<br>(mm) | 高さ<br>(mm) | 樹種   | 接合金物   |
|--------|-----------|------------|----|--------|--------|-----------|------------|------|--------|
|        |           |            |    |        | AM1M1  | 910       | 2730       | ベイマツ | 箱形金物   |
| AS1M2  | 910       | 2730       | スギ | 箱形金物   | AM1M2  | 910       | 2730       | ベイマツ | 箱形金物   |
| AS1C1  | 910       | 2730       | スギ | 箱形金物   | AM1C1  | 910       | 2730       | ベイマツ | 箱形金物   |
| AS1C2  | 910       | 2730       | スギ | 箱形金物   | AM1C2  | 910       | 2730       | ベイマツ | 箱形金物   |
| AS1R1  | 910       | 2730       | スギ | 箱形金物   | AM1R1  | 910       | 2730       | ベイマツ | 箱形金物   |
| AS1R2  | 910       | 2730       | スギ | 箱形金物   |        |           |            |      |        |
| AS2M1  | 1820      | 2730       | スギ | 箱形金物   | AM2M1  | 1820      | 2730       | ベイマツ | 箱形金物   |
| AS2M2  | 1820      | 2730       | スギ | 箱形金物   | AM2M2  | 1820      | 2730       | ベイマツ | 箱形金物   |
| AS2C1  | 1820      | 2730       | スギ | 箱形金物   | AM2C1  | 1820      | 2730       | ベイマツ | 箱形金物   |
| AS2C2  | 1820      | 2730       | スギ | 箱形金物   | AM2C2  | 1820      | 2730       | ベイマツ | 箱形金物   |
| AS2R1  | 1820      | 2730       | スギ | 箱形金物   | AM2R1  | 1820      | 2730       | ベイマツ | 箱形金物   |
| AS2R2  | 1820      | 2730       | スギ | 箱形金物   | AM2R2  | 1820      | 2730       | ベイマツ | 箱形金物   |
| 3BS1C1 | 910       | 2730       | スギ | プレート金物 | 3BM1C1 | 910       | 2730       | ベイマツ | プレート金物 |
| 3BS2C1 | 910       | 2730       | スギ | プレート金物 | 3BM2C1 | 910       | 2730       | ベイマツ | プレート金物 |
| PS1C1  | 910       | 2730       | スギ | 筋かいなし  | PM1C1  | 910       | 2730       | ベイマツ | 筋かいなし  |
| PS2C1  | 910       | 2730       | スギ | 筋かいなし  | PM2C1  | 910       | 2730       | ベイマツ | 筋かいなし  |



図 40 筋かい付木造軸組







図 42 ホールダウン金物 HD-N15

かい軸力はほぼ線形の関係になっており、その比例定数は壁幅 1P の試験体では約 2.5、壁幅 2P の試 験体では約 1.6 であり、筋かいが壁幅 1P では水平荷重の 80%、壁幅 2P では 90%を負担しているこ とになる。

筋かい接合部で破壊が起こる時点で最大荷重となる。そのときの変形角は樹種、壁幅によらず約 1/30rad であった。筋かい接合部が破断してしまうと、軸組のみの荷重・変形関係と等しくなり、耐 力が徐々に上昇しながら変形が進行する。軸組はホールダウン金物により緊結されており、1/10rad 程度の変形角になってもほぞが抜け出すようなことはなかった。筋かい接合部の破壊は接合部の留め 付け金物の種類により異なる。箱形金物の場合、接合に用いている釘やボルトが筋かい材を引き裂く ことによって接合部の破壊が生じている。プレート金物の場合、接合に用いているビスの頂部がせん 断により破断することによって筋かい接合部の破壊が生じている。

#### 筋かいの軸力について

最大耐力は、ほとんどの試験体について、筋かい接合部の強度によって決まっているので、『木質 構造設計基準・同解説』<sup>45)</sup>で説明されている方法で、筋かい接合部の強度を計算する。

釘の一面せん断許容耐力は、(5)式で与えられる。

$$P = Kd^{1.8} \tag{5}$$

ここで、Pは一面せん断に対する長期許容耐力 (kgf)、K は樹種グループによる係数、d は釘径 (cm) である。

ボルト接合の許容せん断耐力は、(6)式で与えられる。

$$P_a = \frac{1}{3}P_y \tag{6}$$

ここで、Paはボルト接合の長期許容せん断耐力、Pyはボルト接合の降伏耐力で、(7)式で与えられる。

$$P_u = CF_e dl \tag{7}$$

ここで、 $P_y$ はボルト接合の降伏耐力、 $F_e$ は主材の支圧強度、lは主材厚、dはボルト径、Cは接合形式とその破壊形式によって定まる係数である。係数Cの値は、(8)式のうち小さい値をとる。

$$1, \sqrt{2 + \frac{2}{3}\gamma \left(\frac{d}{l}\right)^2} - 1, \frac{d}{l}\sqrt{\frac{2}{3}\gamma} \tag{8}$$

ここで、γはボルトの鋼材の基準強度と主材の支圧強度の比である。

木ネジ接合許容せん断耐力は、(9)式で与えられる。

$$P = 870 \times \rho^{1.8} d^2 \tag{9}$$







図 44 荷重と変形の関係 — スギ・2P・箱形金物—



図 45 荷重と変形の関係 —ベイマツ・1P・箱形金物—



図 46 荷重と変形の関係 — ベイマツ・2P・箱形金物—







図 49 単調載荷と1方向繰り返し載荷による復元力特性の違い



図 50 載荷荷重と筋かい軸力との関係 (幅 910mm)



図 51 載荷荷重と筋かい軸力との関係 (幅 1820mm)

ここで、*P*は一面せん断に対する長期許容耐力、ρは木材の気乾比重、*d*は木ネジの呼び径である。

箱形金物は、釘とボルトにより接合されているので、その接合部の強度はそれらを単純に足し合わ せることはできない。箱形金物を使用した試験体の場合、筋かい接合部の破壊は、ボルトにより主材 が割り裂かれるものが多いので、(7)式で許容耐力 P を算定する。スギ、ベイマツの支圧強度 F<sub>e</sub> はそ れぞれ、180、225(kgf/cm<sup>2</sup>)である<sup>45)</sup>。M12 ボルトの鋼材の基準強度は、1.35tonf/cm<sup>2</sup> である。し たがって、スギ及びベイマツの $\gamma$  はそれぞれ、0.133、0.167 となる。C はそれぞれ、0.119、0.133 と なるので、降伏耐力 P<sub>y</sub> はそれぞれ、77.3、108(kgf) となる。ボルトで筋かい材が割り裂かれるとき には、釘によっても割り裂かれているので、釘のせん断耐力を加える。釘径 d = 0.4cm であるから、 釘 1 本当たりの長期許容耐力は、38.4、49.0(kgf) である。釘 7 本で筋かいに留めつけているとする と、釘接合部の長期許容耐力は、268.8、343.0(kgf) となる。ボルトの許容耐力と釘の許容耐 力を足し合わせると接合部の長期許容耐力は、スギの場合 294.6kgf、ベイマツの場合 379kgf となる。

プレート金物の場合、木ネジ8本で留めつけた接合部の長期許容耐力は、(9)式より、スギの場合 223.8kgf、ベイマツの場合 365.1kgf となる。

実験結果と比較する場合には、長期許容耐力ではなく短期許容耐力とする方がよいので、それぞれ 得られた許容耐力を2倍する。しかしながら、実験結果は図 50、51 に示されるように、これを大き く上回っている。

表12に、最大耐力時の筋かい軸力 N<sub>max</sub> を併せて示している。接合部に用いている金物により、樹種により N<sub>max</sub> は異なっているが、壁幅による差は "箱形金物・ベイマツ"の組合わせを除いて、小さい。金物・樹種の組合わせによる最大耐力時の筋かい軸力の平均値は、表 11 のようになる。プレート金物の試験体については、樹種、壁幅の組について各 1 体ずつの試験であったので、平均値ではなく、計測値そのものである。

| 金物・樹種     | 筋かい軸力平均値 (1P/2P) | 設計式より算定 |
|-----------|------------------|---------|
| 箱形・スギ     | 1444.3/1364.5    | 589.2   |
| 箱形・ベイマツ   | 1078.3/1417.0    | 758.0   |
| プレート・スギ   | 1543/1528        | 447.6   |
| プレート・ベイマツ | 2143/2058        | 730.2   |

表 11 最大耐力時の筋かい軸力平均値 (kgf)

### 壁倍率の評価

壁倍率の算定に必要な耐力と変形の値を表 12 に示す。筋かい壁のせん断試験結果から算定した壁 倍率<sup>38)</sup>は、ほとんどの試験体で見かけの変形角が 1/120rad 時の荷重 (kgf/m) によって決まり、箱形 金物の場合、樹種による差は小さく、壁幅 1P では平均 0.9、壁幅 2P では平均 1.6 であり、プレート 型の場合、壁幅による差よりも樹種による差が顕著であり、スギでは平均 1.4、ベイマツでは平均 2.0 であった。樹種、壁幅の条件毎の壁倍率分布を図 52 に示す。壁倍率の算定に際し、先述のように筋か いが利き始めるまで小さい荷重で変形が進行した試験体については、筋かいが利き始めた後の荷重・ 変形関係の立ち上がり剛性を考慮して、割線による補正を行った。ここで、割線は最大耐力の 40%と 20%の 2 点を通る直線とし、その *x* 切片 δ が正の範囲で見掛けの変形角を次式で補正し、補正した変 形角で、1/120rad 時の耐力などを算定した。

$$\delta = \frac{\gamma_4 - \gamma_2}{P_4 - P_2} (-P_2) + \gamma_2$$
  

$$\gamma_{real} = \gamma - \delta$$
(10)

ここで、 $\delta$ は見掛けの変形角を真の変形角に補正するためのオフセット変形量、 $P_2, P_4, \gamma_2, \gamma_4$ はそれ ぞれ、最大耐力の 20%、40%及びその時の見掛けの変形角、 $\gamma$  は見掛けの変形角、 $\gamma_{real}$ は補正後の変 形角である。

得られた壁倍率を建築基準法施行令第46条に規定されている「厚さ3cmで幅9cmの木材又は之と 同等以上の耐力を有する筋かいを入れた軸組」の壁倍率1.5と比較すると、箱形金物の場合、壁幅1P の壁倍率はこれを下回っており、壁幅2Pの壁倍率はこれとほぼ同じであった。プレート型の場合、 スギでは壁幅1P、2Pともほぼ同じ、ベイマツでは壁幅1P、2Pとも十分大きいという結果になった。



#### 3.1.3 既往の実験との比較

三つ割筋かいを筋かいプレート BP で接合した試験体による同様の実験結果<sup>46)</sup>(以後、実験 A と表 記) との比較を行う。筋かい接合部に用いた金物が異なる他は、試験体の仕様、載荷・計測方法、結 果のまとめ方まで、ほぼ同じである。

| 試験体    | $P_{1/120}$ | $2/3P_{max}$ | $P_{1/2\gamma_{max}}$ | Min.   | 壁倍率  | $\gamma_{max}$ | N <sub>max</sub> |
|--------|-------------|--------------|-----------------------|--------|------|----------------|------------------|
| AS1M1  | 105.49      | 70.98        | 105.81                | 70.98  | 0.45 | 0.0317         |                  |
| AS1M2  | 213.96      | 358.00       | 376.28                | 213.96 | 1.36 | 0.0391         | 1320             |
| AS1C1  | 147.37      | 419.33       | 340.77                | 147.37 | 0.93 | 0.0543         | 1495             |
| AS1C2  | 197.84      | 408.67       | 427.41                | 197.84 | 1.25 | 0.0545         | 1518             |
| AS1R1  | 208.48      | 348.00       | 335.75                | 208.48 | 1.32 | 0.0377         |                  |
| AS1R2  | 227.43      | 378.67       | 385.24                | 227.43 | 1.44 | 0.0354         |                  |
| AM1M1  | 146.61      | 324.67       | 447.02                | 146.61 | 0.93 | 0.0039         | 1058             |
| AM1M2  | 241.62      | 426.67       | 407.54                | 241.62 | 1.53 | 0.0342         | 1580             |
| AM1C1  | 184.17      | 230.67       | 196.30                | 184.17 | 1.17 | 0.0197         | 800              |
| AM1C2  | 197.20      | 280.00       | 252.36                | 197.20 | 1.25 | 0.0283         | 875              |
| AM1R1  | 185.36      | 227.33       | 258.62                | 185.36 | 1.18 | 0.0335         |                  |
| AS2M1  | 1000.00     | 506.67       | 635.09                | 506.67 | 1.61 | 0.0029         | 1150             |
| AS2M2  | 507.41      | 665.33       | 670.92                | 507.41 | 1.61 | 0.0255         | 1568             |
| AS2C1  | 519.19      | 607.33       | 733.60                | 519.19 | 1.65 | 0.0288         | 1380             |
| AS2C2  | 466.74      | 590.67       | 599.98                | 466.74 | 1.48 | 0.0237         | 1360             |
| AS2R1  | 624.59      | 605.33       | 639.26                | 605.33 | 1.92 | 0.0172         |                  |
| AS2R2  | 532.78      | 630.67       | 579.89                | 532.78 | 1.69 | 0.0190         |                  |
| AM2M1  | 364.33      | 625.33       | 484.52                | 364.33 | 1.15 | 0.0290         | 655              |
| AM2M2  | 527.19      | 758.00       | 699.58                | 527.19 | 1.67 | 0.0296         | 1793             |
| AM2C1  | 540.53      | 638.67       | 750.70                | 540.53 | 1.71 | 0.0264         | 1480             |
| AM2C2  | 568.55      | 722.67       | 663.08                | 568.55 | 1.80 | 0.0222         | 1740             |
| AM2R1  | 617.66      | 623.33       | 573.07                | 573.07 | 1.82 | 0.0149         |                  |
| AM2R2  | 554.88      | 618.00       | 541.94                | 541.94 | 1.72 | 0.0162         |                  |
| 3BS1C1 | 218.26      | 574.67       | 458.20                | 218.26 | 1.38 | 0.0403         | 1543             |
| 3BM1C1 | 308.35      | 749.33       | 722.23                | 308.35 | 1.95 | 0.0487         | 2143             |
| 3BS2C1 | 505.70      | 866.67       | 772.96                | 505.70 | 1.60 | 0.0318         | 1528             |
| 3BM2C1 | 620.83      | 1118.00      | 965.70                | 620.83 | 1.97 | 0.0290         | 2058             |
| PS1C1  | 52.65       | 167.07       | 162.28                | 52.65  | 0.17 | 0.0979         |                  |
| PM1C1  | 42.48       | 184.67       | 160.66                | 42.48  | 0.13 | 0.0766         |                  |
| PS2C1  | 55.01       | 135.33       | 132.78                | 55.01  | 0.17 | 0.0750         |                  |
| PM2C1  | 65.98       | 186.67       | 173.53                | 65.98  | 0.21 | 0.0721         |                  |

表 12 三つ割筋かい付軸組の主要な実験結果

ただし、

P<sub>1/120</sub>: 見掛けの変形角が 1/120rad 時の耐力 (kgf/m)

2/3P<sub>max</sub>: 最大耐力の 2/3(kgf/m)

 $P_{1/2\gamma_{max}}$ :最大耐力時の変形角の1/2の変形角時の耐力 (kgf/m)

Nmax: 最大耐力時の筋かい軸力 (kgf)

壁倍率を比較すると、実験 A ではスギ試験体で 13 体中 11 体が基準となる倍率 1.5 に達していな いのに対し、本実験結果では、14 体中 8 体がやはり基準倍率に達していない。ただし、本実験では、 幅 1820mm の試験体の 7 体中 1 体が、また、幅 910mm の試験体の 7 体中 7 体が基準倍率に達してい ないのに対し、実験 A では、幅 1820mm の試験体の 7 体中 7 体が、また、幅 910mm の試験体の 6 体 中 4 体が基準倍率に達していないという内訳になっている。

壁倍率について両実験で共通しているのは、幅 910mm の試験体では、三つ割筋かいの接合部を金 物で補強しても、予想外に小さい壁倍率しか得られないということである。筋かいの勾配によって、 その効果に違いがあると言える。

破壊形態は、両実験に共通している。筋かい接合部 (2 個所ある) のどちらかが、金物を留め付けて いる釘やボルトにより筋かい材が引き裂かれる形で亀裂が走り破壊していく。

# 3.1.4 まとめ

三ツ割筋かい付き軸組のせん断載荷試験に基づき、従来と同様の壁倍率による評価と筋かいの耐力 負担割合に関する考察、及び壁倍率や破壊状況について、他の実験との比較を行った。結果をまとめ ると以下のようになる。

- ・ 壁倍率を算定すると、箱形金物による接合では樹種による差よりも壁幅による差が顕著であり、
   壁倍率の平均値は、幅 1P(910mm)の場合 0.9、幅 2P(1820mm)の場合 1.6 であった。幅 1Pの
   ものは建築基準法施行令第 46 条の規定を満足しない結果となった。
- プレート金物による接合では樹種による差が顕著であり、壁倍率の平均値はスギが1.4、ベイマ ツが2.0であった。プレート金物による接合の場合、三ツ割筋かいを引っ張り筋かいとして充 分機能させることができると考えられる。
- 筋かいに作用する軸力は、載荷荷重と線形関係にあり、その比例定数は、壁幅 1P では約 2.5、 壁幅 2P では約 1.6 であった。筋かいが壁幅 1P では水平荷重の 80%、壁幅 2P では 90%を負担 している。しかし箱形金物による接合では接合部の遊びが大きくなり、筋かいが利き始めるま でに変形が進行したものもあった。
- 最大耐力時に筋かいに作用する軸力は、接合金物により、あるいは樹種により、ほぼ一定しており、設計規準<sup>45)</sup>より得られるものに比べて2倍以上大きい。
- 三つ割筋かいについての既往の実験結果と比較すると、同様に、幅1P(910mm)の試験体では十分な壁倍率に達していない。箱形金物による接合では、筋かいに軸力が作用するまでに変形が進む現象が見られる。筋かいの勾配によっては、筋かいが十分に機能しないものと考えられる。

筋かい付木造軸組は、最大耐力時の変形量が大きくとも 1/30rad 程度であり、その後の耐力低下が 大きいので、地震時に応答が大きくなると不利になる可能性がある。すべての鉛直構面に筋かいを入 れることによって、耐力を増加させるという方法もあるが、本実験結果などからも幅 910mm では十 分機能できるとは言難い。

本実験の一部は(財)日本住宅・木材技術センターの「木造軸組構法住宅接合部設計技術開発事業」 <sup>46)</sup>によるものである。実験及びデータ整理に際し、滋賀職業能力開発短期大学校住居環境科の学生 宮川良太君の多大な協力を得た。ここに記し、謝意を表する。

### 3.2 竹小舞下地土塗り壁

1923年関東地震、1948年福井地震などの大地震の度に、木造建物は大きな被害を受け、その度、 幾多の研究者により、被害調査や実験に基づく、木造建物の耐震化を図るべしとの勧告や耐震性能評 価法の提案がなされてきた<sup>11),13),14),47)</sup>が、1995年兵庫県南部地震による阪神・淡路大震災におい ても、木造住宅は倒壊・大破のような甚大な被害を受けた<sup>34)</sup>。その要因として、建設年代の古さ、腐 朽・蟻害に見られる維持管理の悪さ、柱と土台や梁との接合部が緊結されていなかったことなど、多 くが指摘されているが、構造的に最も主要な要因は、壁の量、壁の配置及び壁の質である<sup>11),47)</sup>。こ の指摘は特に目新しいものではなく、田辺平学が、その著『耐震建築問答』で、すでに明言している <sup>11)</sup>。阪神・淡路大震災を教訓として、また、建築基準法の改正による性能規定化へ移行する機会に際 して、木造建物の耐震性能評価法及び耐震設計法を確立して、木造建物の耐震性向上を早期に実現す ることが肝要である。

現在までもっとも普及している在来構法木造住宅で多用されてきた土塗り壁は、耐力壁としての主 要な構造要素であるばかりではなく、日本の気候風土や居住環境に適した機能を有する構造体である が、その耐震性能は、建築基準法施行令第46条において、壁倍率0.5と低く設定されたままである。 このように、耐力壁としての評価が低い要因の一つには、土塗り壁が、地方により施工者により、そ の作り方や性能が大きく異なるということが挙げられる。

建築基準法制定当時に、久田<sup>13</sup>)は「規定の作成にあたつては、初めてのことでもあり、法規のた てまえと実状を考慮して控えめな値がとられたものと考え」たが、今日までこの考えに基づいた規定 が残っているということは、土塗り壁が、他のボード等による補強壁と違って、木造住宅の耐力壁と して適切に評価されないまま今日に至っていると言っても過言ではない。実状を考慮しつつ、耐力壁 としての土塗り壁の適切な評価法や補強法を確立する必要がある。

土塗り壁の載荷実験に関しては、古くは田辺平学<sup>11)</sup> や久田俊彦<sup>12)</sup> までさかのぼることができる。 田辺は、コンクリート構造物と同様の横力分布係数による評価を行った。久田は積載荷重を与えた実 験を行い、田辺と同様、横力分担率による評価を行っている。但し、両者の実験で用いられた試験体 の寸法や構法は、本実験とは若干異なっている他、載荷を最大荷重までしか行っていないので、建物 の地震時の大変形挙動を扱うための資料とすることは難しい。また、最近では、伊藤・長らによる壁 土のせん断耐力に関する実験<sup>48)</sup>、前川による実大中塗り仕上げ壁のせん断耐力実験<sup>49)</sup>、更に、坂本・ 大橋らによる実大土塗り壁等の振動実験<sup>50)</sup>がある。

本研究においては特に、京都の大工・左官により製作された、現在の木造住宅で一般に用いられる 竹小舞下地の土塗り壁の耐力と変形性能を明らかにし、壁倍率や破壊性状などの耐震性能を再評価す ること、並びに、軸組のみから壁・筋かいの入った試験体について実験を行うことにより、軸組・壁 土・筋かいの耐力負担割合を明らかにすることを目的とする。

#### 3.2.1 実験の概要

#### 実験の目的

土塗り壁は地方により施工者によりその作り方や性能が大きく異なると考えられる。本実験におい ては、京都の大工・左官が木造住宅等で通常行っている施工法により、竹小舞下地の土塗り壁を製作 し、繰り返し水平力載荷実験を行い、土塗り壁の耐力・変形性能や破壊状況を明らかにし、壁倍率等 の耐震性能を定量的に評価する。

土塗り壁厚による効果を調べるために、壁土のない軸組のみや竹小舞下地を加工した軸組と、荒壁 及び中塗り壁のように、土塗り壁の製作過程に分類して載荷実験を行う。さらに、筋かいの有無によ る違いを明らかにするために、上記の壁種別に加えて、筋かい付の軸組、荒壁及び中塗り壁について 実験を行った。

#### 試験体

実験で用いた試験体の種類を表13に示す。筋かいなし・筋かい付の2つに分け、それぞれの製作過 程ごとに全部で7種類、また、各試験体種別の試験体のばらつきを考慮するため、1種類の試験体に つき2体ずつの計14体とした。以下では、試験体名称を、2種類目の試験体のうち1体目をNo.2aと いうように略称で表す。木造壁体のせん断試験における標準試験体数は3体とされているが、本実験 においては、製作過程ごとの復元力特性の変化を調べることに重点を置き、実験日程のこともあり、 試験体数を各2体とした。

試験体の軸組立面図及び右方からの断面図を図 53 に示す。以降においては、壁のこの面を表ある いは表側面と表記する。柱及び横架材にはベイマツ、貫にはスギを使用した。横貫は、写真 12 に示 されるように、柱心より内側で柱を貫通させて柱の内外から楔留めとした。楔にはスギ材を用いた。 立貫は、横貫の外側に沿わせて、桁のホゾ穴に挿し込んで釘 2 本で留め、土台から約 15mm 浮かせて いる。これは、壁土の重さで立貫が下がっても、立貫が土台に突っ張らないようにするためである。 横貫と立貫の交差部を 2 本釘打ち (N45)、柱と横架材の接合部は、大変形時に軸組みが崩壊すること を避けるため、短ほぞで、ホールダウン金物により緊結した。使用したホールダウン金物は、柱と桁

# 表13土塗り壁試験体一覧

| 試験体 | 柱・梁寸法            | 貫寸法             | 貫段数 | 貫楔 | 土塗り状況 | 筋かいの有無 | 試験体数 |
|-----|------------------|-----------------|-----|----|-------|--------|------|
| 1   | $105 \times 105$ | $15 \times 105$ | 4段  | スギ | なし    | なし     | 2体   |
| 2   | $105 \times 105$ | $15 \times 105$ | 4段  | スギ | なし    | なし     | 2体   |
| 3   | $105 \times 105$ | $15 \times 105$ | 4段  | スギ | 荒壁    | なし     | 2体   |
| 4   | $105 \times 105$ | $15 \times 105$ | 4段  | スギ | 中塗り   | なし     | 2体   |
| 5   | $105 \times 105$ | $15 \times 105$ | 4段  | スギ | なし    | 三つ割    | 2体   |
| 6   | $105 \times 105$ | $15 \times 105$ | 4段  | スギ | 荒壁    | 三つ割    | 2体   |
| 7   | $105 \times 105$ | $15 \times 105$ | 4段  | スギ | 中塗り   | 三つ割    | 2体   |



図 53 試験体軸組



写真12 横貫を楔留め

の接合部に S-HD10、柱と土台の接合部に HD-10B である。筋かいにはベイマツの三ツ割材 (105 × 30) を用い、接合部に壁倍率 2 倍用金物 (BP-2 同等品) を用いて、筋かい側を SN40 釘 7 本、柱・横 架材側をそれぞれ SN50 釘 4 本で留め付けた。

下地竹は、間渡し・小舞竹とも幅 25~30mm の割竹を用いた。間渡し竹は、約 50cm 間隔で、端部 を柱に設けた間渡し穴に差し込み、貫にのみ釘留めとした。小舞竹を、写真 12 に示されるように、3 ~4cm 間隔にナイロン製の下地縄で掻き付けた。下地竹の掻き付けが完了した状態を写真 13 に示す。

### 壁土・養生期間

壁土は荒壁・中塗りとも京都深草産の土を使用し、土・スサ・水の配合比は特に指定しなかった。 荒壁土について別途土・スサの重量比を測ったところ、スサ:土=0.4~0.8 %であった。含水率は荒 壁土の場合平均 20 %、中塗り土では平均 19 %であった。左官作業時の壁土のフロー値は荒壁土の場 合平均 143.7、中塗り土の場合平均 145.5 であった。荒壁土のスサは、約 7cm(2 寸 5 分) に稲わらを 切ったものを用い、中塗り土のスサは、長さ 10mm 未満の市販の微塵スサを使用した。荒壁の壁厚は 30mm、中塗り後の壁厚を 55mm とした。荒壁・中塗りのいずれも裏返しを行った。

荒壁土の練り合わせを 1997 年 10 月 20 日に行い、1 週間後の 10 月 27 日に荒壁の表を付けた (写真 14)。その 4 日後の 10 月 31 日に裏返し塗りを行った。中塗りについては 1997 年 11 月 28 日に壁土の 製作、左官作業を行った。

最初の荒壁試験体 (試験体 No.3a) の実験を 1997 年 11 月 22 日に行ったので最低養生期間は 22 日である。中塗り壁試験体の最低養生期間は 46 日である。



写真13下地竹の掻き付けが完了した試験体


写真 14 荒壁を付けているところ (1997 年 10 月 27 日)

### 載荷実験装置と載荷及び計測方法

## 載荷装置

実験に用いられた載荷実験装置は、京都大学宇治構内の防災研究所実験室(旧人為地震発生装置室) に新しく設置した。載荷実験装置全体の立面図を図 54 に示す。載荷装置として、容量 10tonf、スト ローク 800mm の電動アクチュエータ (THK 株式会社製 AE80+800L-00145) を用いた。

壁試験体は、中央部ピット内に通常の壁と同様に鉛直に立てて、横揺れ防止用梁で挟み込んで設置 する。載荷装置は、最大2間幅までの任意の幅・高さの壁試験体を設置し得る。載荷装置の立面図を 図 54 に示す。

## 載荷方法

実験はJISA1414の規定に定められた、面内せん断試験(B)に従って行った。載荷には電動アクチュ エータを用い、変位制御による自動載荷を行った。図2に示される載荷装置の左から右の向きを正と して、桁部の水平変位が、層間変形角で1/480、1/240、1/120、1/60、1/30、1/15、1/10radとなる 変形を折り返し点とし、各折り返し点を最低2回経験するような正負繰り返し載荷を行い、損傷状況 と併せて復元力特性を調べた。

## 計測方法

加力方向は、図 54 の載荷実験装置において、右方向に作用する水平力を正方向としている。変形 角も同様に、試験体の表側面から見て、試験体が右方向に変形するとき、すなわち、時計回りの回転 を正方向として定めている。

試験体に作用する水平荷重は、アクチュエーター先端に取り付けたロードセルにより計測し、図55 に示される、試験体の各変位計取付位置における変位量を計測した。変位の計測内容は、桁の水平変 位(①、②、③)、土台の水平変位(④)、土台の浮き沈みによる変位(④、⑤)、柱頭並びに柱脚 の浮き沈みによる変位(⑥~①)、柱頭並びに柱脚に生じる回転角(⑥~①の値より計算)である。 これらの計測データは5秒間隔で自動記録を行い、リアルタイムにモニターに表示しながら実験を 行った。

### 3.2.2 荷重と変形の関係及び破壊状況

載荷時の土台の水平変位及び浮き上がりとも 10<sup>-2</sup>mm のオーダーであり、桁部の水平変位 (最大 273mm) に比べると十分小さいのでこれらを無視して、見かけの変形角を真の変形角とする。



図 54 載荷装置立面図



図 55 荷重·変位計測位置

# 貫のみ (試験体 No.1)

荷重と変形角の関係を図 56 に示す。図中、縦に引いた破線は 1/120、1/60、1/30、1/15、1/10rad の変形を示す。この試験体は、貫のみで抵抗するため、剛性も最大耐力も小さい。変形が大きくなる につれ耐力は増加傾向を示し、最大耐力時の変形は 1/10rad であった。各変形レベルの 2 サイクル目 においては 1 サイクル目より耐力が小さくなり、くり返し載荷により耐力が低下している。

変形角 1/30rad 付近から、楔の割れ (写真 15)、縦横の貫を留めている釘による、貫接合部のきし みが顕著であった。

## 小舞下地付き (試験体 No.2)

荷重と変形角の関係を図 57 に示す。試験体 No.1 と同様の復元力特性であり、小舞下地は耐力には ほとんど寄与していないと言える。破壊状況は試験体 No.1 と同様である。

試験体 No.2a は、内法貫に節があり、1/10rad 変形時にその部分で割れを生じた (写真 16) が、耐力が大きく減少することはなかった。

## 荒壁 (試験体 No.3)

荷重と変形角の関係を図 58 に示す。最大耐力時の変形は 1/30~1/15rad と大きい。No.3a と No.3b の実験日が約 3 週間空いてしまったので壁土養生期間の影響が出たのであろうか、No.3b の方が No.3a に比べて最大耐力が約 1.2 倍、1/120rad 変形時の耐力は約 1.3 倍であった。壁土の強度試験法を確立



**写真 15** 試験体 No.1 で、1/30rad 変形時に胴 貫部分の楔が割れた

**写真 16** 試験体 No.2 で、1/10rad 変形時に内 法貫が節部分で割れた

し、養生期間による壁土の強度変化を調べる必要がある。1/120rad 変形時の耐力は壁土のない試験 体 No.1,2 と比べると平均で 6 倍以上上昇した。

下地竹に沿った壁土の薄い部分でのひび割れが目立つ。隅角部は壁のせん断変形により圧壊する。 裏側の面では立貫の両側が10~15mm 盛り上がり、壁土が観音開きのようになる。1/15rad 以上の変 形になるとひび割れた壁土の小片が剥落する。試験体 No.3a の 1/10rad 変形時の状態を、写真 17 に 示す。

# 中塗り壁 (試験体 No.4)

荷重と変形角の関係を図 59 に示す。荒壁より更に耐力は上昇して 1/120rad 変形時の耐力は 2.6~ 3.6 倍、最大耐力は 1.8~2.5 倍であったが、最大荷重時の変形は荒壁よりも小さく 1/60rad であった。 最大荷重に達した後の耐力劣化も荒壁に比べて著しい。本実験に関する限り、土塗り壁の変形性能は、 中塗り壁よりも荒壁の方が高い。

変形が 1/60rad を超えると、表側では横貫に沿って水平のひび割れがちり付近から壁中央に進展す る。まず貫に沿ってひび割れが生じるという点は、杉山らの実験 (文献<sup>47)</sup>、p.178) と似ている。変形 角が 1/30rad になると、表側の面、特に内法貫と胴貫の間や胴貫と地貫の間でせん断による×のひび 割れが目立ち始め、1/15rad になると、隅角部から小片の剥落が始まる。すでに生じている×のひび 割れ部分では、壁土が浮き上がってくる。2 度目の 1/10rad の変形時には×に割れた部分の下の三角 部分が大きく剥落した。その際、胴貫や地貫部分の貫伏せに使用している寒冷沙も一緒に剥がれてく るので、胴貫や地貫が露呈する。No.4b では裏側でも立貫の上部で約 50cm 四方が剥落した。写真 18 に、試験体 No.4b の裏側の壁土が剥落した状態を示す。最終の破壊状況は、杉山らの実験では「中央 の貫の部分の土が剥落した」(文献<sup>47)</sup>、p.179)のに対し、本実験では、1/10rad まで変形させたので、



写真17 試験体 No.3a 1/10rad 変形状態



写真18 試験体 No.4b 裏側で壁土が大きく剥落

大部分の壁土が剥落するという無残なものであった。

### 筋かい付き小舞下地 (試験体 No.5)

試験体 No.2 に筋かいが加わったタイプの試験体である。荷重と変形角の関係を図 60 に示す。筋かいの効果により、剛性・耐力とも試験体 No.1,2 に比べて大きい。しかし、筋かいが引き抜かれ (No.5b)、 或いは座屈曲げにより折れた (No.5a) あとは耐力を大きく減少し、試験体 No.1,2 と同様の復元力特 性を示す。

筋かいは金物で両端を固定しているだけであるので、変形が 1/120rad を超えるころから座屈し面 外にはらみ出す。負の載荷時には筋かいは引っ張られるので、-1/60rad 付近で接合部に釘による割 裂きを生じる。試験体 No.5a は、-1/30rad 変形時には、接合部の強度に余力があり、筋かいが引き 抜かれることはなかったが、続いて 1/15rad の変形を与える途中で、筋かいが、座屈により大きく曲 げ変形を生じたため、中央部で折れた。試験体 No.5b では、筋かいは引っ張り、座屈による曲げを 繰り返した後、-1/30rad 変形時に、筋かい材が釘により割り裂かれるのではなく、上接合部の釘が 抜けることにより、筋かいが接合部から外れた。筋かい接合部の破断は、釘接合の状態によって決ま り、座屈曲げによる折損は木材の曲げ強度によって決まるが、同一の試験体であっても構造特性にば らつきがあるため、このような破壊状況の違いが見られたと考えられる。

## 筋かい付き荒壁 (試験体 No.6)

試験体 No.3 に筋かいが加わったタイプの試験体である。荷重と変形角の関係を図 61 に示す。1/120rad 変形時の平均耐力を荒壁 (試験体 No.3) と比較すると、正の載荷では約 1.6 倍、負の載荷では約 2.5 倍 に耐力が上昇している。しかしながら、–1/30rad 変形で筋かいが釘による割り裂きを受けて引き抜 かれ、大きく耐力を減少する。

1/120rad 変形時に筋かいの座屈による面外変形を生じ、耐力が減少する。1/60rad 変形になると 下地竹に沿った壁土の薄い部分に細かいひび割れを生じ始める。貫と柱、筋かいと柱の隅角部で壁土 が圧壊を始めるのもこの頃である。変形角が 1/30rad になると、壁中央部から壁土の剥落が始まる。 No.6a、No.6b とも、負方向載荷時、変形が –1/30rad に達する直前に、筋かい下部接合部が抜けた 以後の復元力特性は、試験体 No.3 と同様になる。

# 筋かい付き中塗り壁 (試験体 No.7)

試験体 No.4 に筋かいが加わったタイプの試験体である。荷重と変形角の関係を図 62 に示す。試験体 No.7a では、-1/30rad 変形時に筋かい接合部が引き抜かれて最大耐力に達し、試験体 No.7b では 1/30rad 変形時に筋かいが座屈曲げにより、筋かい中央部の節で折れて最大耐力に達した。試験体 No.4 と比較して、最大荷重は正の載荷については約 1.2 倍、負の載荷については 1.3~1.6 倍であり、



図 56 荷重と変形角の関係 (試験体 No.1, 貫のみ)



図 57 荷重と変形角の関係 (試験体 No.2, 小舞下地付き)









写真 19 試験体 No.7b: 筋かいが座屈により折れる

1/120rad 変形時の耐力は 1.0~1.4 倍であった。

試験体 No.7a の破壊状況を以下に述べる。1/120rad 時には、筋かいが座屈により面外へはらみ出 し、約 1cm の隙間が見られた。壁土そのものには目立った損傷は見られず、柱と壁土の間に小さな 隙間 (散り切れ)を観察できる程度であった。1/60rad では、裏面の上部でひび割れた壁土が一部剥 落した。1/60rad 変形の2度目の載荷途中で裏面に斜めの亀裂を生じた。筋かいの座屈による面外変 形を、筋かい中央部で測定したところ、およそ11cm であった。また、表側では貫の上下に水平な亀 裂を生じていた。1/30rad では、表側で全ての貫に沿って横方向の下地竹に沿った亀裂が顕著になっ た。裏側では負の載荷時に筋かいが釘により割り裂きを受け始め、正の載荷時には下方の筋かい端部 周辺の壁土が圧壊して浮き上がっていた。目標変形 1/30rad に達したときの筋かいの座屈たわみは約

試験体 No.7b では筋かい中央部に節があったため、1 度目の 1/30rad の載荷途中に筋かいが折れた (写真 19)が、そのまま載荷を続けたため、-1/15rad に向かう負の載荷途中、-1/30rad を越えてす ぐ、折れた部分が引きちぎられて筋かいはその機能を喪失した (写真 20)。1/10rad 変形になると、表 側では内法貫と胴貫の間、胴貫と地貫の間部分で壁土が大きく剥落し、裏側でも筋かい位置より上の 三角の部分でその約半分が剥落した。写真 21 に試験体 No.7b の裏側面の壁土が剥落した状態を示す。

## 3.2.3 竹小舞下地土塗り壁の耐震性能評価

### 壁倍率の評価

11 式により算定した壁倍率及び最大耐力とその時の変形量をすべての試験体について表 14 に示す。



写真 20 試験体 No.7b: 座屈により折れた筋かいが切れる



写真 21 試験体 No.7b: 裏面でも壁土が大きく剥落する



図 60 荷重と変形角の関係 (試験体 No.5, 筋かい付き小舞下地)



図 61 荷重と変形角の関係 (試験体 No.6, 筋かい付き荒壁)



$$\alpha = \frac{3}{4} \times P \div 130 \tag{11}$$

ここで、α は壁倍率、P は「耐力壁の見かけの変形角が 1/120rad 時の抵抗力」、「最大耐力の 2/3」 及び「最大耐力時の変形角の 1/2 の変形角時の耐力」の最小値 (kgf/m) である <sup>38)</sup>。なお、筋かい付 の試験体では、載荷の方向によって復元力特性が異なるため、表中+、 – の記号で載荷方向による違 いを表している。

試験体種別ごとの壁倍率を図 63 に示す。図中の○は荷重が正の範囲で算定された平均壁倍率、▲ は荷重が負の範囲で算定された平均壁倍率をそれぞれ表す。また、+印は、試験体 a, b の載荷方向ご との壁倍率であり、試験体 2 体のばらつきを示す。筋かい付の試験体では載荷方向により壁倍率のば らつきが大きい。

貫のみの試験体 No.1 の壁倍率は、正の載荷に対しては 0.14~0.15、負の載荷に対しては 0.03 と小 さいが、正負いずれの載荷に対しても最大変形時に最大耐力に達しており、高い変形性能を示してい る。竹小舞下地が加わった試験体 No.2 も、壁倍率はほぼ同じである。筋かい付の試験体 No.5~7 で は、筋かいの効果により剛性が大きく、壁倍率も大きい。しかし、最大荷重に達するまでの変形は、 特に筋かいが圧縮される方向の載荷に対しては小さい。試験体 No.5b では、変形が 1/120rad に達す る直前に筋かいが座屈してしまい、大きく耐力を減少している。試験体 No.5a では、図 60 からもわ かる通り、圧縮筋かいとしては全く機能していないと思えるほど耐力の劣化が早かった。筋かい接合 部を金物で補強しているため、引張筋かいとしての性能を十分発揮して、-1/30rad 付近で最大耐力 となっている。

荒壁試験体 No.3 では、2 体の差はあるものの、壁倍率は平均で 1.0 を越えており、ホールダウン金 物などによって軸組の崩壊を防ぐ手立てを講ずれば、耐力壁として十分機能することが窺える。筋か い付の荒壁試験体 No.6 では、筋かいにより最大耐力が決まる上、その後の耐力低下が著しいので、 大地震時に変形が大きくなる場合には耐力を期待できないと考えられる。

更に、中塗りを施すと剛性が大きくなり、筋かいのない試験体 No.4 では約 1/60rad で最大耐力に 達する。筋かい付試験体 No.7 の場合、筋かいの圧縮による座屈や引っ張りによる接合部の破壊状況 により、最大耐力時の変形はばらついている。

## 復元力特性に関する考察

試験体種別ごとに、荷重 – 変形関係の包絡線を図 64 に示す。ここでは、試験体の各 2 体について 載荷時の折り返し点での荷重の平均を取っている。筋かい付の試験体については、筋かいの引張り 側、–1/30rad 付近で筋かいが抜けて耐力が急激に低下する点も追加した。この耐力が低下する点の 変形角は、実際には–1/30rad 付近にばらついているのであるが、筋かい損傷後の耐力低下を示すた めに、便宜的に等しい変形であるかのように描いた。貫のみの試験体 No.1 と小舞下地付試験体 No.2

| 討騇休 No       | 討驗休種別    | 載荷方向 | P(1/190) | 2/3Pmay   | P(y max/2)         | 最大荷重  | 最大荷重時  |
|--------------|----------|------|----------|-----------|--------------------|-------|--------|
| □八河穴 /井 110. | 山凉灯平作里刀门 | 戦间刀间 | 1(1/120) | 2/ or max | $P(\gamma \max/2)$ | Pmax  | の変形角   |
| 1a           | 貫のみ1     | +    | 45.28    | 247.33    | 217.33             | 371   | 0.101  |
|              |          | _    | -29.75   | -227.33   | -168.64            | -341  | -0.098 |
| 1b           | 貫のみ 2    | +    | 45.81    | 220.00    | 200.32             | 330   | 0.097  |
|              |          | _    | -28.30   | -274.00   | -242.43            | -411  | -0.100 |
| 2a           | 貫下地1     | +    | 30.48    | 220.00    | 194.28             | 330   | 0.098  |
|              |          | _    | -37.62   | -234.00   | -155.62            | -351  | -0.094 |
| 2b           | 貫下地2     | +    | 80.83    | 270.67    | 269.14             | 406   | 0.100  |
|              |          | _    | -75.20   | -307.33   | -293.50            | -461  | -0.098 |
| 3a           | 荒壁1      | +    | 304.44   | 397.33    | 535.37             | 596   | 0.064  |
|              |          | _    | -266.10  | -367.33   | -468.87            | -551  | -0.098 |
| 3b           | 荒壁 2     | +    | 392.04   | 484.00    | 651.46             | 726   | 0.063  |
|              |          | _    | -376.34  | -424.00   | -571.16            | -636  | -0.064 |
| 4a           | 中塗1      | +    | 923.96   | 911.33    | 921.99             | 1367  | 0.016  |
|              |          | _    | -1225.63 | -934.67   | -1162.45           | -1402 | -0.015 |
| 4b           | 中塗 2     | +    | 972.30   | 868.00    | 950.48             | 1302  | 0.016  |
|              |          | _    | -1071.67 | -791.33   | -1052.33           | -1187 | -0.015 |
| 5a           | 筋かい付下地1  | +    | 280.99   | 250.67    | 341.11             | 376   | 0.061  |
|              |          | _    | -540.25  | -600.67   | -683.90            | -901  | -0.026 |
| 5b           | 筋かい付下地2  | +    | 641.00   | 457.33    | 314.68             | 686   | 0.008  |
|              |          | _    | -572.63  | -594.00   | -749.85            | -891  | -0.027 |
| 6a           | 筋かい付荒壁1  | +    | 558.49   | 534.00    | 677.42             | 801   | 0.032  |
|              |          | _    | -726.53  | -754.67   | -847.14            | -1132 | -0.023 |
| 6b           | 筋かい付荒壁 2 | +    | 611.03   | 660.67    | 896.95             | 991   | 0.068  |
|              |          | _    | -905.12  | -998.00   | -1093.75           | -1497 | -0.024 |
| 7a           | 筋かい付中塗1  | +    | 1148.89  | 1024.67   | 1131.44            | 1537  | 0.016  |
|              |          | _    | -1270.15 | -1258.67  | -1848.89           | -1888 | -0.029 |
| 7b           | 筋かい付中塗 2 | +    | 1442.93  | 1118.67   | 1576.16            | 1678  | 0.027  |
|              |          | _    | -1280.54 | -1268.67  | -1427.63           | -1903 | -0.045 |

表 14 竹小舞下地土塗り壁の最大耐力、壁倍率等一覧



はほぼ等しい包絡線であったため、小舞下地付試験体 No.2 の包絡線を省略した。

壁土なしの状態から荒壁、中塗りと壁が厚くなるにつれ最大耐力や剛性が上昇しているのがわかる。 また、筋かいが付くことにより最大耐力及び剛性が高くなっている。筋かい付荒壁・筋かい付中塗り 壁は、筋かいの引張り破断もしくは曲げ折損後、筋かいなし荒壁と同程度にまで耐力が低下する。ま た、筋かいの有無に係わらず、中塗り壁は、変形が大きくなると壁土の割れや剥落などの損傷により 耐力が減少するが、1/10rad の最大変形時には、筋かいなし荒壁と同等な耐力を保持している。

# 壁厚及び筋かいの効果

荒壁及び中塗り壁などの壁土の有無による耐力の上昇、また、筋かいの有無による耐力への影響を 調べるために、7種類の試験体について、載荷時の折り返し点での耐力差を求めた。壁土及び筋かい の有無による耐力差を縦軸、変形角を横軸として描いたものを図 65 及び 66 にそれぞれ示す。筋かい の耐力差については、図 64 の包絡線と同様に、引っ張り側で筋かいが抜けることにより耐力が急激 に低下する点も追加した。

壁土による耐力増加は筋かいの有無に依らず、荒壁、中塗りとも似た傾向を示している。筋かい付 試験体では+1/120rad 変形に達する前に筋かいの座屈により耐力を大きく減少したものがあったた め、筋かい付試験体の壁土による耐力増加 (図 65 の□) はばらつきが大きい。+1/120rad 変形時の荒 壁による耐力増加は、筋かいなし試験体の場合 (図 65 の△) 平均 308kgf、筋かい付試験体の場合 (□) 平均 100.5kgf である。中塗りによる壁土のない状態からの耐力増加は、筋かいなし試験体の場合平 均 901kgf、筋かい付試験体の場合平均 732kgf である。

筋かいによる耐力増加は、壁土のない試験体及び荒壁試験体ではほぼ等しい。中塗り壁の場合、





1/120rad 程度までの小さい変形の範囲では、図 66 からもわかるように、壁土そのものの抵抗が大き いため筋かいによる耐力増加は小さいが、壁土のない試験体及び荒壁試験体とよく似た傾向を示して いる。壁土なし試験体及び荒壁試験体の、–1/120rad 変形時の筋かいによる耐力増加は平均 488.5kgf であった。これは、筆者らが先に行った三ツ割筋かい付軸組の載荷実験結果 <sup>46),51),52)</sup>の約 93%であ る。また、平嶋らの実験結果 <sup>41)</sup>、1/120rad 時の 428kgf と比較しても、近い値となっている。

荒壁土及び中塗り土の、壁体の各層間変形レベルにおける平均負担応力を図 67 に示す。壁土の負担応力は、塗り厚を考慮して次式で算定した。

$$\tau = \Delta P/t \tag{12}$$

ここで、 $\tau$  は壁土の負担応力、 $\Delta P$  は、各層間変形レベルでの壁土による耐力増加、t は壁土の塗り 厚である。 $\Delta P$  は試験体の種類に応じて、次式で算定した。 $P_{\text{No.1}\sim7}$  は、それぞれの種類の試験体 2 体の耐力の平均値である。

$$\Delta P_{\text{筋かいなし荒壁}} = P_{\text{No.3}} - P_{\text{No.1}} \tag{13}$$

$$\Delta P_{筋かい付荒壁} = P_{No.6} - P_{No.5} \tag{14}$$

- $\Delta P_{\text{fibult} b} = P_{\text{No.4}} P_{\text{No.3}} \tag{15}$ 
  - $\Delta P_{筋かい付中塗り} = P_{No.7} P_{No.6}$  (16)

荒壁の塗り厚tは3cm、中塗りの塗り厚tは2.5cm(中塗り後の総塗り厚が5.5cm)である。



これらのことからも、軸組、筋かい、壁土といった要素の組み合わせにより土塗り壁の復元力特性 を推定可能であると考えられるが、とりわけ壁土の力学特性が不明な部分が多く、まだ土塗り壁の復 元力特性の定式化には至っていない。

### 過去の実験との比較

今回の試験体は柱・横架材の接合部がホールダウン金物で緊結されており、筋かい接合部もZマー ク同等品により補強されているので、かなり頑丈な作りになっている。そこで、他の研究者による実 験結果との比較を行った。同様の試験体での実験には、古くは田辺らの実験<sup>11)</sup> や久田の実験<sup>12)</sup>、最 近では、伊藤・長らの実験<sup>48)</sup>、前川の実験<sup>49)</sup>、坂本・大橋らの実験<sup>50)</sup> などがある。

田辺の実験で用いられた試験体のうち、両面漆喰仕上と本実験の試験体 No.3 及び 4(筋かいなし荒 壁、中塗り壁) との比較を行う。およそ 1/120rad 変形時の両面漆喰仕上試験体の耐力は、600kgf/m である。これは、本実験の試験体 No.3 (筋かいなし荒壁) の約 3.3 倍、No.4(筋かいなし中塗り壁) の 約 1.0 倍であるから、田辺の用いた両面漆喰仕上土塗り壁は、本実験で用いられた両面に中塗りを施 した真壁と同等の壁倍率であったと言える。

久田の実験における試験体は、柱及び横架材が 100 × 100、貫が 15 × 100 のスギ材、貫は 3 段で ある。載荷も本実験とは異なり、同じ試験体を 2 体平行に立て、桁部分をつなぐ床に積載荷重を与え ている。柱と横架材の接合部は箱金物により補強されている。荷重・変形関係の包絡線 (文献 <sup>12)</sup> の第 5-1 図) から、1/120、1/60、1/30rad 変形時の耐力 (2P) を読み取るとそれぞれ、244、416、564kgf である。壁1面につき1m当たりの耐力に換算すると、表15のようになる。久田の実験で用いられた、SB6試験体の土塗り壁が、仕上げまで施されたものかどうか明記されていないが、当時の土塗り 壁は、本実験で用いられた荒壁の約半分の耐力であったことが窺える。

前川の実験結果を併せて表 15 に示す。この試験体は、柱が 120cm 角、貫が 30 × 105、横架材が 135cm 角であり、表側面のみ中塗り仕上げとしている。壁厚は 60mm である。各変形時の耐力、最 大耐力時の変形とも、前川の実験結果の方が大きい。軸組のみの耐力を比較すると、本実験の試験体 No.1 の 1/120rad 変形時の耐力は平均で 20kgf/m であるのに対して、前川の実験結果では 65kgf/m であるので、軸組の負担耐力は前川の試験体の方が大きい。これは、軸組に使用した材の寸法による 差だと考えられる。同様に、1/120rad 変形時の壁土による耐力増加を比較すると、本実験では平均 495kgf/m であるのに対して、前川の結果は 610kgf/m である。この原因は壁厚の差によるものと考 えられる。

坂本らの実験結果は、軸組をホールダウン金物で緊結した中塗り仕上げ土塗り壁の最大耐力が 840kgf/m、そのときの変形角が1/51radであること、壁倍率が2.2~3.5と高いことを示している。本 実験の結果と比較すると、最大耐力及び壁倍率が大きく、最大耐力時の変形はほぼ等しい。最大耐力 の差は、軸組に使用した材の寸法の差によるものと考えられる。壁土の負担耐力は、1/120rad 変形 時に450kgf/mであり、本実験の中塗りによる耐力増加は、筋かいなし試験体では平均495kgf/mで あるので、本実験結果の方が若干大きい。

壁土のせん断耐力への寄与を調べるため、前川と同様に壁土のせん断応力を (12) 式で算定した。表 16 に示すように、中塗り壁のせん断応力は、1/120rad 変形時には 0.96kgf/cm<sup>2</sup> となり、前川の結果 0.97kgf/cm<sup>2</sup> とほぼ等しい。坂本らの実験結果から同様に算定した壁土のせん断応力を併せて表 16 に 示す。本実験結果及び前川の実験結果と比較すると、近い値となっている。壁土の負担耐力差は壁厚 に関係していると言える。

|                            | 一定変形時せん断荷重 (kgf/m) |      |      |
|----------------------------|--------------------|------|------|
|                            | 1/120rad           | 1/60 | 1/30 |
| 試験体 No.3(本実験)              | 170                | 229  | 295  |
| 試験体 No.4(本実験)              | 531                | 715  | 660  |
| 試験体 SB6(久田) <sup>12)</sup> | 67                 | 114  | 155  |
| 試験体 TU1(前川) <sup>49)</sup> | 610                | 796  | 945  |
| 土壁 (坂本)30)                 | 500                | _    | _    |

表 15 他の実験との耐力の比較

## 表 16 1/120rad 変形時のせん断応力の比較

|                            | 面積 (cm <sup>2</sup> ) | 壁土負担耐力 (kgf) | せん断応力 (kgf/cm <sup>2</sup> ) |
|----------------------------|-----------------------|--------------|------------------------------|
| 試験体 No.3(本実験)              | 514.5                 | 308          | 0.60                         |
| 試験体 No.4(本実験)              | 943.25                | 901          | 0.96                         |
| 試験体 TU1(前川) <sup>49)</sup> | 1128                  | 1090         | 0.97                         |
| 土壁 (坂本)30)                 | 1127.4                | 900          | 0.80                         |

## 実大建物の復元力特性との比較

第2章で行った水平力載荷実験の対象建物は、土塗り壁を主な耐力壁としているものが多かった。SI 邸及び TU 邸について、2層の復元力特性を 3.2 節で得られた竹小舞下地土塗り壁の結果と比較する。

それぞれ、2 層の復元力特性と荒壁、中塗り壁の復元力特性を重ねて描くと、図 68 のようになる。 両邸とも、復元力特性の包絡線は、荒壁と中塗り壁の復元力特性の間を通る形となっているが、初期 剛性に近い範囲で見ると、中塗り壁の包絡線と近いところを通っているのがわかる。変形が大きくな ると、中塗り壁は、変形が1/60rad に至るまで耐力を増加するのに対し、SI 邸、TU 邸とも、さほど 耐力が増加していない。明確な理由付けは難しいが、両住宅の復元力特性の横軸が、柱脚や土台の浮 き上がりも含んだ見掛けのせん断変形角であるのに対し、荒壁、中塗り壁のそれは真の変形角である こと、住宅の載荷実験では、浮き上がりや接合部の破壊を防ぐ手だてを一切行わず、そのままの状態 で実験を行ったのに対し、耐力壁の実験においては、土台の浮き上がりを防ぐためにアンカーボルト を用い、柱・横架材の接合部が容易に離れないようにホールダウン金物で緊結しているために、耐力 壁の耐力そのものが、2 住宅の耐力壁に比べて大きくなっていたのではないか、という2 点が考えら れる。

いずれにしても、耐力壁の実験結果のみから建物全体の復元力特性を推定することは困難であり、 耐力壁以外の要素も考慮に入れて、建物全体の復元力特性や損傷のメカニズムを明らかにする研究が 今後も重要である。

## 3.2.4 まとめ

在来構法土塗り壁の耐震性能を実験的に検証するために行った実大土塗り壁の静的正負繰り返し載 荷実験より得られた成果をまとめると以下のようになる。

### 試験体の破壊状況

 試験体の破壊状況は、貫のみ・小舞下地試験体では大変形時での貫楔のめり込み、貫留め釘に よる貫の割り裂きが見られた。小舞下地試験体において、下地竹は変位にあわせて変形する程 度で、損傷は見られなかった。



図 68 既存木造住宅2層の復元力特性と土塗り壁の復元力特性の比較

- 2. 荒壁試験体ではせん断変形角 1/120rad からちり周りに隙間が生じ、1/60rad では下地竹に沿っての亀裂が見られ、変位振幅が大きくなるにつれて亀裂は大きくなり、軸組四隅付近の壁土が破壊されて剥落した。中塗り壁試験体では、せん断変形角 1/60rad あたりで壁土にせん断亀裂が生じ、また、ちり周りの壁土も剥落し始めた。大変形時には貫伏せの剥落など壁土に大きな損傷が見られた。
- 筋かいを有する試験体ではせん断変形角 1/120rad から正方向載荷時に筋かいが構面外にたわみ、負方向載荷時には筋かい材端部が釘により割り裂かれ始めた。せん断変形角が –1/30rad 付近で最大耐力に到達して、程なくして筋かいが接合部で引き抜かれたものが大半であった。

# 荷重と変形角の関係

- 荷重-変形角関係おいて、履歴復元力特性はすべての試験体でスリップ性状を有していることが 特徴として挙げられる。
- 2. 貫のみ・小舞下地試験体は、剛性は小さいが最大耐力時の変形が 1/10rad であり、柔軟な変形 性能を示した。最大荷重時の変形は、荒壁試験体の場合約 1/15rad、中塗り壁の場合約 1/60rad であった。筋かい付試験体の最大荷重時の変形はいずれも筋かいの引張方向で約 –1/30rad で あった。
- 3. 筋かいなし試験体の壁倍率は、貫のみの場合で平均0.1、小舞下地の場合で平均0.18、荒壁の場合で平均1.1、中塗りの場合で平均2.8であった。筋かい付試験体の壁倍率は、載荷方向により異なるので、筋かいの引張方向の荷重に対する壁倍率を()で併記すると、筋かい付き小舞下地の場合平均0.9(1.8)、筋かい付き荒壁の場合平均1.8(2.6)、筋かい付き中塗りの場合平均3.4(4.0)であった。
- 筋かいなし荒壁試験体では2体の耐力の差が大きかった。これは養生期間が22日と46日との 差によるものであろう。
- 5. 壁土のない状態から荒壁、中塗りと壁厚が増すにつれて耐力が上昇するが、これは筋かいの有 無に依らず似た傾向を示している。最大耐力への寄与は、荒壁で約 450kgf(約 400kgf)、中塗 り壁で約 1200kgf(負側は筋かいの有無によりばらつくが概ね 1000kgf)となっている。
- 6. 筋かいによる耐力増加も、特に壁土なし試験体、荒壁及び中塗り壁試験体については、ほぼ等 しかった。最大耐力への寄与は、筋かいの圧縮方向で約 250kgf、引張方向で約 750kgf である。

### 土塗り壁の耐震性能

本実験により、ホールダウン金物によって軸組の接合部を緊結した場合、貫構造土塗り壁の変形性 能が大きいこと、土塗り壁の壁倍率が、建築基準法施行令第46条に規定されている0.5よりも大きく 十分な耐震性能を有していること、土塗り壁における接合部の金物補強の有用性が明らかとなった。 軸組のみの状態から、荒壁、中塗り壁へと壁厚が増すことにより、更に、筋かいが付くことにより、 土塗り壁の耐力が一定して上昇することが明らかになった。

今後、壁土の材料試験により、壁土の耐力への寄与及び破壊過程を明らかにし、土塗り壁の復元力特性 の定式化を行い、木造住宅の実大実験結果<sup>30),35),43),53)</sup>及び他の耐力壁の実験結果<sup>11),12),41),46),48)-52)</sub> 等を総合して、木造建物の耐震性能の定量的評価法を確立する必要がある。</sup>

## 3.3 ボード下地左官仕上げ壁

伝統的壁構法の1つである土塗り壁は、断熱性能・調湿機能に優れ、日本の気候風土や居住環境に 適した機能を有する構造体であるが、壁土の準備や乾燥のために工期が長くなる、土を使うために壁 そのものが重くなるなど不利な面もある。これに対して、パネル工法の壁は、工期が短く、現行の規 定においても、竹小舞下地の土塗り壁に比べて、同等あるいはより高い耐震性能を持つとされてい る。そのため、木造建物の被害の大きかった阪神・淡路大震災以来、パネル工法やパネル補強が注目 されている。しかし、左官仕上げ壁には、単なる構造性能だけでは表せない温かみや魅力がある。

本研究では、既存の土塗り壁の良さを残しつつ、耐震補強を行う際の方法の一つとして、従来の荒 壁の代わりに石膏ボードなどのパネルを下地に用い、表面を漆喰などの左官材料で仕上げた壁を製作 し、これらについて、前節の土塗り壁と同様の静的載荷実験を行い、耐力と変形性能の関係を明らか にし、壁倍率や破壊性状などの耐震性能の評価を行う。また、パネル補強左官仕上げ壁の有効性を検 証することを目的とする。

### 3.3.1 実験の概要

### 試験体

本実験で用いた試験体の種別を表 17 に示す。試験体は全部で 10 体である。パネルと左官仕上げ材 料の組み合わせを 5 種類設定し、No.1~No.5 とした。それぞれの種類の試験体を各 2 体ずつとし、 仕上げを行う・行わないもの 1 体ずつに分類して、仕上げの有無による復元力特性や破壊性状の違い を調べた。仕上げを行わないものを a、仕上げを行ったものを b として、以下では、No.1a のように 表す。

試験体の詳細を、図 69~73 に示す。全試験体共通に、柱・横架材には 105 角のベイマツ材を使用 し、柱と横架材の接合部は、短ほぞでホールダウン金物 (S-HD10、HD-10B) により緊結した。間柱

| 試験体 柱・梁寸法 |                    | 胆柠汁汁                                 | 表 (すべて真壁) |             | 裏 (真壁もしくは大壁)        |            | 借老        |
|-----------|--------------------|--------------------------------------|-----------|-------------|---------------------|------------|-----------|
|           |                    | 间位引任                                 | ボード       | 仕上げ (塗り厚)   | ボード                 | 仕上げ (塗り厚)  | 1冊 15     |
| No.1a     | $105 \times 105$   | 45 × 45                              | 石膏ボード     | なし          | 石膏ボード               | なし         | 内辟仕样      |
| No.1b     | $103 \times 103$   | $40 \land 40$                        | (12mm)    | ジュラク (3mm)  | $(12 \mathrm{mm})$  | ジュラク (3mm) | I PIELLAK |
| No.2a     | 105 × 105          | 45 × 45                              | ラスボード     | なし          | ラスボード               | なし         | 内辟仕样      |
| No.2b     | b $105 \times 105$ | $43 \land 43$                        | (7.5mm)   | 石膏モルタル下塗    | $(7.5 \mathrm{mm})$ | 石膏モルタル下    | 的空任惊      |
|           |                    |                                      |           | +クリーム漆喰上    |                     | 塗+ジュラク上塗   |           |
|           |                    |                                      |           | 塗 (8mm)     |                     | (8mm)      |           |
| No.3a     | 105 × 105          | $105 \times 105 \qquad 30 \times 75$ | ラスボード     | なし          | 構造用合板               | なし         |           |
| No.3b     | $103 \times 103$   |                                      | (7.5mm)   | 石膏モルタル下塗    | (12mm)              | ラスモルタル刷毛   |           |
|           |                    |                                      |           | +漆喰上塗 (8mm) |                     | 弓 (10mm)   |           |
| No.4a     | 105 × 105          | $105 \times 105$ $30 \times 75$      | 石膏ボード     | なし          | ラスカット板              | なし         | 从辟仕様      |
| No.4b     | 105 × 105          |                                      | (12mm)    | クリーム漆喰      | $(7 \mathrm{mm})$   | モルタル刷毛引    |           |
|           |                    |                                      |           | (3mm)       |                     | (9mm)      |           |
| No.5a     | $105 \times 105$   | 45 × 45                              | ラスボード     | なし          | 石膏ボード               | なし         | 内辟仕様      |
| No.5b     | 105 / 105          | 5 X 100   40 X 40                    | (7.5mm)   | 石膏モルタル下塗    | (12mm)              | ジュラク (3mm) |           |
|           |                    |                                      |           | +漆喰上塗 (8mm) |                     |            |           |

にはスギ材を用いた。その寸法は表1に示す通りである。試験体 No.1、No.2、及び No.5 は間仕切り 壁として用いられる内壁仕様であり、No.3 及び No.4 は外壁仕様である。

柱・横架材の軸組は、既存の土塗り壁を外した後、パネル補強を行う状況を想定して、3.2 節で述 べた竹小舞下地土塗り壁の実験で用いた試験体の軸組を再利用している。ただし、ホールダウン金物 は、竹小舞下地土塗り壁の実験時に塑性変形しているため、同じもので新品に交換した。通常の工事 では、間柱の取り付け、石膏ボードなどのパネルの取り付けまでを大工が行い、左官仕上げのみを左 官職人が行うが、本実験においては、間柱の取り付け以後の作業も、全て左官職人が行った。ボード を留める釘には、N38を用い、ピッチは特に指定しなかったが、およそ150mmである。左官作業は、 1998年7月4日に下塗りを行い、7月8日に上塗り仕上げを行った (写真 22、23)。

## 載荷・計測方法

3.2 節と同様、載荷には容量 10tonf、ストローク 800mm の電動アクチュエータを用い、層間変形 角が 1/480, 1/240, 1/120, 1/60, 1/30, 1/15, 1/10rad となる変形を最低 2 回経験するように繰り返し 載荷を行った。載荷装置の全景を写真 24 に示す。

写真 25 に示すように各計測器を取りつけ、載荷点での荷重、桁部の水平変位、土台の水平変位及 び浮き上がり、柱・横架材接合部の抜け及び回転角を計測した。

# 3.3.2 荷重と変形の関係、破壊状況

荷重と変形角の関係を図 74~78 に示す。仕上げのある試験体 (b) は、仕上げのない試験体 (a) に比べて、最大耐力が大きい。最大耐力時の変形角は、試験体 No.1a の他は 1/60~1/30rad である。ま



図 69 試験体 No.1



図 70 試験体 No.2



図 71 試験体 No.3



図 72 試験体 No.4



図 73 試験体 No.5



写真 22 下塗作業の状況



写真 23 上塗り作業の状況



写真24 載荷装置

た、仕上げの有無によらず、変形角が 1/30rad を越えるとパネルが脱落し始める、という傾向が共通 に見られる。載荷途中の破壊状況により、最大層間変形角 1/10rad に至らなかった試験体がほとんど である。試験体 No.3a、No.4a、No.5a のみ、1/10rad 変形まで載荷を行うことができた。

# 試験体 No.1(両面石膏ボード張り)

荷重と変形角の関係を図 74 に示す。仕上げのない試験体 (a) は、石膏ボード間の隙間が大きい状 態であったので、変形角が 1/15rad まで大きくなったときに、隙間がふさがって少し耐力の上昇が見 られたが、それまでに石膏ボード自体が損傷していたため、程なくして、ボードが、裏側中段、裏側 下段、表側中段、表側上段の順に脱落した。1/120rad 変形時に、まず表側中段のボードの右下隅が 圧壊した。以後、他の部分のボードでも、隅角部の圧壊が進み、特に辺縁部では釘が抜けてくるなど の破壊状況が顕著であった。

仕上げのある試験体 (b) では、変形角が 1/240rad を越えて 1/120rad へ向かう途中で、仕上げ材 のジュラクが、ボードの継ぎ目部分で水平にひび割れた (写真 26)。以後は、変形角が 1/120rad に達 する頃から、仕上げのジュラク、ボードの石膏等が隅角部や辺縁で圧壊して (写真 27)、最終的には、 1/15rad 変形時に表側上段、表側中段の順に、続いて裏側の上段中段のボードが同時に脱落した (写 真 28) ので、載荷を終了した。仕上げ材料だけが剥がれ落ちてくるということは、隅角部や周辺部以 外では見られなかった。最大耐力は、No.1a が 1/15rad 変形時に 1042kgf、No.1b が 1/60rad 変形時 に 1482kgf であった。



(a) 載荷荷重



(b) 土台の水平変位、浮き上がり



(c) 柱・横架材接合部

写真 25 荷重・変形量の計測












写真 26 試験体 No.1b: ジュラクが水平にひび割れ



写真 27 試験体 No.1b: 隅角部での圧壊



写真28 試験体 No.1b: ボードが脱落

# 試験体 No.2(両面ラスボード)

荷重と変形角の関係を図 75 に示す。試験体 No.2a の場合、No.1a と同様、1/120rad 変形時に、ラ スボードの隅角部の圧壊が見られた。1/30rad 変形時に、裏側下段、続いて表側下段のラスボードが 座屈した (写真 29)。1/15rad 変形時に、表側下段、裏側中段のラスボードが続けて脱落、裏側中段の ボードはすでに座屈していた裏側下段のラスボードに刺さった。その後、-1/15rad 変形時に表側中 段のボードが脱落し、裏側上段のボードが座屈により折れた。2 度目の -1/15rad 変形時に、座屈し た裏側上段のボードが脱落した時点で実験を終了した。釘留め部分のボードの損傷は、辺縁部ほど大 きく、釘が抜けてくるものも見られた。

試験体 No.2b は、1/60rad 変形時に、隅角部の漆喰やジュラクがひび割れて剥落し始めた。しかし、 最初の –1/30rad 変形に至る以前に、桁部分が折れてしまった (写真 30)ので実験を終了した。表側、 裏側とも、ラスボードが脱落するまでには至らなかった。

# 試験体 No.3(ラスボード+構造用合板)

荷重と変形角の関係を図 76 に示す。試験体 No.3a では、変形角が 1/60 を越えると、ラスボード の隅角部の圧壊、釘の引き抜けが顕著であった。特に、釘の引き抜けはラスボード・構造用合板とも 周辺部で大きい。まず、1/15rad 変形時に、下段のラスボードが座屈し、中段の構造用合板が脱落し た。1/15rad 変形の後再び 1/30rad 変形をさせたが、その際、上段のラスボードが脱落した。続いて 1/10rad の変形をさせると、中段のラスボードが落下して、座屈していた下段のラスボードに刺さっ た。上段の構造用合板は、大壁で桁に約 70mm ピッチで釘留めされていたため、浮き上がりは見られ たものの、脱落はしなかった。



写真 29 試験体 No.2a: 表下段のラスボードが座屈



**写真 30** 試験体 No.2b: 桁が折れたので実験終了



写真 31 試験体 No.3b: ラスボード脱落

試験体 No.3b では、桁部の水平変位が約 –18mm の時にラスモルタル面の左上部分が大きく浮き 上がった。1/15rad 変形に達する前に、それまでに浮き上がっていた上段、中段のラスボードが脱落 し (写真 31)、耐力が大きく減少した。その後、–1/15rad 変形に至る前に実験を終了した。

# 試験体 No.4(石膏ボード+ラスカット)

荷重と変形角の関係を図 77 に示す。No4a の場合、1/240rad を越える頃から、ラスカット面で釘 のきしみ音が始まる。1/60rad 変形時には、石膏ボードの隅角部の圧壊やラスカットの周辺の浮き上 がり (写真 32) が見られる。1/30rad 変形時に表側中段の石膏ボードが脱落した (写真 33)。続けて載 荷を行ったところ、最終的には、石膏ボードが上段、下段の順で、全て脱落した。

No.4b では、1/120rad 変形時に、表側で隅角部の圧壊が始まる。1/60rad 変形時には、表側に、ボードの継ぎ目に沿って水平のひび割れが生じる。更に、裏側では周辺部の釘の抜けが目に見えて大きくなってくる。変形角が –1/15rad に達する前に、表側から見て右の柱が折れた。折れた部分は、胴貫のほぞ穴の近くであり、節も見られた。

# 試験体 No.5(ラスボード+石膏ボード)

荷重と変形角の関係を図 78 に示す。No.5a は 1/30rad 変形以後も耐力を大きく低下することなく、 1/10rad まで変形することができたが、1/10rad 変形時に、表側上段・中段のラスボード、裏側上段 の石膏ボードが続けて脱落した後、わずかに耐力を低下し、再び 1/10rad 変形となったときに、裏側 中段の石膏ボードが脱落した。

No.5b では、1/240rad 変形を越えてすぐ、裏側で、石膏ボードの継ぎ目に沿った水平のひび割れを 生じた。-1/30rad 変形時には表側のラスボードが脱落し大きく耐力を減少した。その後、1/15rad



写真 32 試験体 No.4a: ラスカット周辺部の損傷



**写真 33** 試験体 No.4a: 中段石膏ボードが脱落

変形まで載荷を行ったが、耐力は、-1/15rad 変形時に 210kgf まで低下した。

# 3.3.3 耐震性能評価

# 壁倍率の評価

次式により算定した、ボード下地左官仕上げ壁の壁倍率を図 79 に示す。

$$\alpha = \frac{3}{4} \times P \div 130 \tag{17}$$

ここで、 $\alpha$ は壁倍率、Pは

- 1. 耐力壁の見かけの変形角が 1/120rad 時の抵抗力
- 2. 最大耐力の 2/3
- 3. 最大耐力時の変形角の1/2の変形角時の耐力

の最小値 (kgf/m) である<sup>38)</sup>。全試験体について 1~3 の各耐力、最大耐力 (kgf/m) 及び壁倍率などを 表 18 に示す。



図 79 ボード下地左官仕上げ壁の壁倍率分布

試験体は左右対称であるので、載荷方向による壁倍率の大きな違いは見られない。試験体 No.3b や No.5b では、正方向の載荷時の耐力が大きく、壁倍率にもその差が見られる。仕上げのない試験体 (a) の場合、両面真壁 (内壁仕様) である No.1a、No.2a、No.5a がほぼ等しい壁倍率となっており、1.1~

|       |   | P(1/120) | $2/3P_{max}$ | $1/2P_{\gamma max}$ | 最小值    | 壁倍率  | P <sub>max</sub> | $\gamma_{max}$ |
|-------|---|----------|--------------|---------------------|--------|------|------------------|----------------|
| No.1a | + | 198.76   | 381.68       | 354.15              | 198.76 | 1.15 | 572.53           | 0.0645         |
|       | - | -171.13  | -189.01      | -247.87             | 171.13 | 0.99 | -283.52          | -0.0655        |
| No.1b | + | 590.00   | 539.19       | 730.68              | 539.19 | 3.11 | 808.79           | 0.0247         |
|       | - | -566.71  | -508.06      | -560.77             | 508.06 | 2.93 | -762.09          | -0.0159        |
| No.2a | + | 309.85   | 240.29       | 289.09              | 240.29 | 1.39 | 360.44           | 0.0133         |
|       | - | -234.42  | -178.02      | -234.23             | 178.02 | 1.03 | -267.03          | -0.0161        |
| No.2b | + | 856.03   | 772.16       | 787.65              | 772.16 | 4.45 | 1158.24          | 0.0141         |
|       | - | -910.99  | -768.50      | -1045.00            | 768.50 | 4.43 | -1152.75         | -0.0254        |
| No.3a | + | 442.53   | 381.68       | 515.43              | 381.68 | 2.20 | 572.53           | 0.0301         |
|       | - | -429.31  | -337.36      | -498.02             | 337.36 | 1.95 | -506.04          | -0.0320        |
| No.3b | + | 1019.36  | 973.99       | 1234.54             | 973.99 | 5.62 | 1460.99          | 0.0238         |
|       | - | -925.19  | -830.77      | -923.12             | 830.77 | 4.79 | -1246.15         | -0.0158        |
| No.4a | + | 357.16   | 359.34       | 520.48              | 357.16 | 2.06 | 539.01           | 0.0658         |
|       | - | -393.71  | -319.05      | -392.31             | 319.05 | 1.84 | -478.57          | -0.0160        |
| No.4b | + | 791.74   | 687.91       | 766.67              | 687.91 | 3.97 | 1031.87          | 0.0148         |
|       | - | -801.94  | -638.46      | -799.79             | 638.46 | 3.68 | -957.69          | -0.0159        |
| No.5a | + | 255.05   | 231.14       | 317.53              | 231.14 | 1.33 | 346.70           | 0.0328         |
|       | - | -252.08  | -203.66      | -294.33             | 203.66 | 1.17 | -305.49          | -0.0640        |
| No.5b | + | 823.30   | 682.42       | 793.96              | 682.42 | 3.94 | 1023.63          | 0.0152         |
|       | - | -610.25  | -603.30      | -766.14             | 603.30 | 3.48 | -904.95          | -0.0246        |

表 18 ボード下地左官仕上げ壁の最大荷重、壁倍率

1.3 である。片面が大壁 (外壁仕様) である No.3a 及び No.4a では、壁倍率は約 2.0 となっている。仕 上げを施した試験体 (b) の場合、仕上げのない試験体に比べて、2~4 倍の壁倍率となっている。内壁 仕様の No.1b、No.2b、No.5b では、それぞれ 3.0、4.4、3.7 であり、仕上げをすることによって壁倍 率が 3~4 倍になっている。外壁仕様である No.3b、No.4b の壁倍率は、それぞれ 5.2、3.8 である。

## 復元力特性に関する考察

最大荷重に至るまでの各試験体の荷重と変形の関係の包絡線をまとめて図 80 に示す。図 80(a) は 仕上げのない試験体、図 80(b) は仕上げのある試験体である。図 80 の繰り返しになるが、5 種類の試 験体各々について、仕上げの有無による包絡線の違いを図 81~図 85 に示す。

試験体は左右対称に製作されているので、包絡線は原点を中心に点対称になるはずであるが、約 1/120radより大きな変形になると、正方向の載荷時に試験体が損傷を受けることにより、負方向の載 荷時には耐力が低下するために、包絡線全体は点対称とならない。下地ボードの組み合わせが同じで あれば、仕上げがある場合には、最大耐力は 1.8-3.7 倍にまで上昇している。最大耐力の上昇は、ラ スボード張りに石膏モルタルで下塗りを行った試験体 No.2、No.3、No.5 で大きく、それぞれ、3.7 倍、2.5 倍、3.0 倍となっている。破壊要因は、留め釘によるボードの辺縁での損傷が支配的であり、 仕上げの有無によらず、下地ボードの組み合わせが同じであれば、破壊により耐力が減少する変形角 はほぼ等しい。

#### 3.3.4 まとめ

5 種類のボード下地左官仕上げ壁の載荷実験を行い、壁倍率の評価及び仕上げの有無による復元力 特性の違いを調べた。ボード類による補強という観点からは、竹小舞土塗り壁よりも大きな耐力にな るので、有利である。ただし、本実験で下地として用いたボード類は、土壁の性能の一つである吸放 湿性という観点から見ると、それ自身は湿気に対して弱い材料であるので、実用に当たっては、吸放 湿性をもつボード類の完成を待たねばならない。

今後、下地ボードや仕上げ材料の違い、仕上げの有無による復元力特性の違いを明らかにするな ど、結果を詳細に検討するとともに、パネル補強壁の復元力特性を解析的に検討<sup>54)</sup>して、本実験で 使用した各試験体の復元力特性を推定する必要がある。

#### **3.4** 方杖・袖壁による耐震補強壁

3.2 節の竹小舞下地土塗り壁の載荷実験と同時期に、方杖・袖壁による耐震補強壁の載荷実験を行った<sup>28)</sup>。

阪神・淡路大震災では、店舗付住宅のような、桁行方向に比べて張間方向の壁量が著しく小さい住 宅の被害が多く見られた。このような建物において張間方向の補強を行うには、方杖、袖壁、垂壁が



図 80 各試験体の復元力特性の包絡線



図 82 仕上げの有無による包絡線の違い (試験体 No.2)



図 84 仕上げの有無による包絡線の違い (試験体 No.4)



図 85 仕上げの有無による包絡線の違い (試験体 No.5)

有効な方法のひとつである。一般に、幅 90cm 未満の短い壁や垂壁などは壁量算定の際に考慮されないことが多く、袖壁や垂壁で補強された開口をもつ軸組の耐力に関する研究は少ない。このような開口をもつ軸組の耐力と変形性能を把握しておくことは、張間方向の壁量を十分確保できない住宅を補強する場合の方法を提示するためにも重要である。

## 3.4.1 実験の概要

本節では、載荷実験結果を 3.2 節などと同様に、耐力壁としての性能に着目し、壁倍率や最大耐力 と変形性能という形で取りまとめる。

試験体の種類及び形状は、文献<sup>28)</sup> に記載の通りである。試験体の仕様を表 19 に再掲する。柱と 横架材の接合部は短ほぞで、筋かいプレート (BP-2) やホールダウン金物により補強した。載荷及び 計測は、竹小舞下地土塗り壁と同様に行い、載荷荷重、桁部の水平変位、土台の水平変位・浮き上が り、柱の抜けを計測した。

## 3.4.2 実験結果の考察

壁倍率の値 (文献<sup>28)</sup>、p.68) を比較すると、タイプ7、5、6、4、3、2、1 の順に大きく、袖壁だけ よりもその間を垂壁で繋いだ方が、層間変形角 1/120rad 以内の範囲で耐力を発揮することがわかる。 合板補強によりタイプ4、5、6、7 では最大耐力が 2tonf を超えるほど大きいものもあるが、その分

| 試験体                             | 高さ (心々) | 幅    | 柱・梁・土台    | 面材 (厚さ 9mm) | 方杖      | 金物                                                  |
|---------------------------------|---------|------|-----------|-------------|---------|-----------------------------------------------------|
| タイプ 1<br>(軸組架構)                 | 2630    | 1820 | 105x105   | なし          | なし      | 筋 か い<br>プレート<br>(片面)                               |
| タイプ 2<br>(方杖架構)                 | 2630    | 1820 | 105 x 105 | なし          | 105x105 | 筋 か い<br>プレート<br>(片面)                               |
| タイプ 3<br>(方杖添柱<br>補強)           | 2630    | 1820 | 105 x 105 | なし          | 105x105 | 筋 か い<br>プレート<br>(両面)                               |
| タイプ 4a<br>(袖壁補強・<br>大壁仕様)       | 2630    | 1820 | 105 x 105 | 9 面         | なし      | 筋 か い<br>プレート<br>(両面)                               |
| タイプ 4b<br>(袖壁補強・<br>真壁仕様)       | 2630    | 1820 | 105 x 105 | 9 面         | なし      | 筋 か い<br>プレート<br>(片面)                               |
| タイプ 5a<br>(門型壁補<br>強・大 壁<br>仕様) | 2630    | 1820 | 105x105   | 9 面         | なし      | 筋かい<br>プレート<br>(両面)、<br>ホールダ<br>ウン金物<br>(HD-N15)    |
| タイプ 5b<br>(門型壁補<br>強・真 壁<br>仕様) | 2630    | 1820 | 105 x 105 | 9 面         | なし      | 筋かい<br>プレート<br>(両面)、<br>ホールダ<br>ウン金物<br>(HD-N15)    |
| タイプ 6<br>(片袖壁補<br>強・大 壁<br>仕様)  | 2630    | 1820 | 105x105   | 9 面         | 105x105 | 筋かい<br>プレート<br>(両面)、<br>ホールダ<br>ウン金物<br>(HD-N15)    |
| タイプ 7<br>(全面合板<br>張・大 壁<br>仕様)  | 2630    | 1820 | 105 x 105 | 9 面         | なし      | 筋 か い<br>プレート<br>(両 面)、<br>ホールダ<br>ウン金物<br>(HD-N15) |

表 19 試験体一覧 (寸法単位:mm)

柱脚にかかる引き抜き力も大きいのでホールダウン金物などによって柱脚の引き抜きを防ぐ必要が ある。

実際の実験では、タイプ1、2、3、4の試験体は、柱脚(柱頭)を図に示される筋かい接合用のプレート金物を釘で留めつけただけであるので、接合部の強度が十分でなかったのであろう、柱脚の引き抜きにより最大耐力が決定している。

『木質構造設計規準・同解説』<sup>45)</sup>の釘接合部の強度計算法に従うと、柱脚の引き抜き耐力は、(18) 式で得られる。

$$P = Kd^{1.8} \times 2 \times 釘の本数 \tag{18}$$

ここで、*P*は釘接合部の一面せん断に対する短期許容耐力、*K* は樹種グループによる係数、*d* は釘径 (cm) である。本実験の場合、試験体に使用した樹種がベイマツであるので*K* = 255、また、*d* = 0.25 である。したがって、柱脚の引き抜き耐力は、筋かいプレート片面のみのタイプ1や2、4bの場合、 *P* = 168.24(kgf) となる。

載荷荷重は、柱の軸力とアンカーボルトの軸力に分配され、実験時にはいずれの計測も行っていな いため、実際にどの程度の力がかかって柱脚が引き抜けたのかは不明であるが、上記の略算からも、 柱脚の引き抜きを防ぐためにはきちんとした手立てが必要であると言える。

また、ホールダウン金物により柱と横架材の接合部を補強した試験体では、最大耐力時の変形が層 間変形角で 1/30rad を超えるものもあり、壁体の補強に当たっては、軸組を適切に補強することも重 要であると言える。

# 3.5 木造耐力壁の耐震性能評価指標に関する検討

住宅を中心とする木造建物の設計基準は、既に述べたように、開口のない壁である耐力壁の有効長 さ (壁量) を確保することが主要なものである。壁量を算定する際に用いられる係数は "壁倍率" と呼 ばれており、土塗り壁では 0.5、三つ割筋かい付軸組では 1.5、といった値が用いられている。前節ま でにおいて、筆者らが行った木造耐力壁の静的せん断載荷実験結果について、この壁倍率による評価 を行い、現在用いられている壁倍率の値の見直しが必要であることを示した。

しかしながら、壁量の算定はベースシアー係数 0.2 相当の地震力に対するものであって、いわば、 弾性設計のみを行っていることになる。耐震性能という観点からは、壁倍率の評価のみでは不十分で あり、壁倍率以外に、耐力壁の性能を評価する指標を示す必要がある。

ここでは、これまでに示した荷重と変形の関係に基づき、最大耐力に至るまでに耐力壁が消費した エネルギーについて述べる。

図86に示すように、最大耐力に至るまでの包絡線を描き、図の斜線部分の面積で消費エネルギー



図 86 木造耐力壁の消費エネルギーの評価

を(19)式で算定する。

$$E = \int P\Delta d\Delta \tag{19}$$

ここで、*P*は桁部の水平変位が △ の時の耐力であり、実際の計算に際しては、台形積分とした。 筋かい付軸組、竹小舞下地土塗り壁及びボード下地壁について、上記の計算を行った結果を表 20 ~22 に示す。

# 筋かい付木造軸組について

表20において、試験体 AS2M1 の消費エネルギーが最も小さくなっているが、これは、図 44(a) の 荷重・変形関係からも明らかなように、実験がうまく行えなかったことによるものである。筋かい付 木造軸組と筋かいのない純骨組で、消費エネルギーの値を比較すると、幅 1P(910mm)の試験体では、 接合金物がプレート金物である場合を除いて、いずれの試験体もベイマツ材を使用したものよりスギ 材を使用したものの方が、消費エネルギーが大きくなっている。筋かい付軸組の最大耐力とその時の 変形角を見ても、接合部に箱形金物を使用している試験体では、幅 1P では、スギ材を使用したもの の方が大きい結果となっている (表 12)。更に、幅 1P の試験体では、筋かいのない純骨組の方が消費 エネルギーが大きくなることもあり、このことからも、筋かいが入っていてもその柱スパンによって は耐震上不利になり得ると言える。幅 2P(1820mm)の試験体や接合部にプレート金物を使用した試験 体では、いずれも、ベイマツ材を使用した試験体の方が、スギ材を使用した試験体より最大耐力が大 きく、その時の変形角が大差ないので、消費エネルギーが大きくなり、耐震上有利であると言える。

## 竹小舞下地土塗り壁について

表21 に示す、最大耐力に至るまでの消費エネルギーについて、壁土の有無、あるいは筋かいの有無 による比較を行う。最大耐力に至るまでの包絡線に基づく算定であるので、筋かいのない試験体 No.1 ~No.4 では、最大耐力時の変形角が小さい No.4(中塗り壁)の消費エネルギーが最も小さくなってい る。筋かい付の試験体 No.5~No.7 では、載荷方向により、最大耐力が大きく異なるので、載荷方向 それぞれの平均値を併せて表 21 中に記載している。載荷方向 + は、筋かいが圧縮力を受ける方向で ある。筋かい付の試験体では、正の載荷方向のときの最大耐力時の変形角が、表 14 (p.86) に示すよ うに、大きいものと小さいものがあるので、消費エネルギーにすると、試験体による差が大きい。筋 かいの有無による消費エネルギーの違いを見ると、壁土がない試験体の場合には、最大耐力時の変形 角によって、No.1,2 の方が No.5 よりも大きい。荒壁の場合、載荷方向が正の時と負の時で消費エネ ルギーに差が見られ、筋かいが引っ張り力を受ける負方向の載荷時には消費エネルギーは小さい。中 塗り壁 (No.4、No.7) の場合は、正方向載荷時、最大耐力はもちろん、最大耐力時の変形も筋かい付 の試験体の方が大きくなるので、消費エネルギーは筋かい付試験体 (No.7) の方が大きくなっている。

最大変形に至るまでの消費エネルギーの変化を図 87~89 に示す。図の右側は載荷方向が正の場合 の、図の左側は載荷方向が負の場合の消費エネルギーの変化をそれぞれ表す。載荷方向が負の時、筋 かいには引張力が作用しており、変形が –1/30rad 付近で最大耐力となる。筋かいなしの試験体で は、載荷方向によらずほぼ同様に、消費エネルギーの増加が見られる。一方、筋かい付の試験体では、 載荷方向が負の場合、約 –1/30rad 変形で最大耐力になった後、筋かい接合部の損傷により耐力を大 きく減少するため、消費エネルギーの増分が小さくなっている。特に、中塗り壁では、最大変形時の 全消費エネルギーは、筋かいなしの試験体の方が大きくなっており、土塗り壁の場合には、筋かいが なくても、ある程度の耐震性能を有していると言える。

#### ボード下地壁について

表 22 に示す、最大耐力に至るまでの消費エネルギーは、試験体 No.1 及び No.2 を除き、仕上げあ りの方が小さくなっている。これは、表 18(p.116) からも明らかなように、変形性能の違いによるも のである。すなわち、仕上げをすることによって耐力が上昇するのと引き替えに、変形性能が著しく 低下している。これらに対して、とりわけ試験体 No.2 では、仕上げをすることにより耐力が上昇し、 かつ最大耐力時の変形がほとんど変わらない、という結果になっている。この結果を見る限り、No.2 のタイプは、壁倍率の点からも、消費エネルギーの点からも有利であると言えよう。

# 3.6 まとめ

木造耐力壁の静的せん断力載荷実験を行い、破壊過程の概要、壁倍率の評価、ならびに最大耐力に 至るまでの消費エネルギーについてまとめた。 筋かい付木造軸組の破壊は筋かい接合部の損傷が顕著であり、その時点で最大耐力となっている。 最大耐力時に筋かいに作用している軸力は、樹種や壁の幅によってほぼ一定であり、現在用いられて いる設計式から得られる値より大きい。しかし、最大耐力時の変形は小さく、最大耐力に至るまでの 消費エネルギーは小さい。壁幅が小さいと、筋かいに作用する軸力が大きくなりやすいので、不利で ある。

日本で古くから用いられている竹小舞下地土塗り壁は、現在壁倍率 0.5 と低い評価であるが、ホー ルダウン金物により軸組を補強することで、壁倍率 4.0 近くまで耐力を期待できる。変形性能が大き く、筋かい付木造軸組に比べて、遥かに大きな消費エネルギーを持つ。

土塗り壁の補強法の一つとして、下地をボード張りとした壁体について、同様な実験・結果の整理 を行った。仕上げをすることによる耐力の上昇は大きいが、変形性能が低下するという問題があるが、 実験結果を見る限り、変形性能が変わること無く耐力が上昇する方法も可能であるようだ。

ここでは、最大耐力に至るまでの消費エネルギーの算定に留めたが、繰り返し載荷を行った試験体 について、繰り返しも含めた履歴消費エネルギーも重要である。また、最大耐力に至るまでではなく、 最大耐力からある程度耐力を減少する点までの消費エネルギーを評価することが、筋かい付木造軸組 のように最大耐力に達すると大きく耐力を減少するものと竹小舞下地土塗り壁のように急激な耐力低 下を起こさない壁を比較する際には、望ましいと考えられる。

| 試験体名称  | エネルギー   | 試験体名称 | エネルギー   |
|--------|---------|-------|---------|
| AM1M1  | 2250.23 |       |         |
| AM1M2  | 3403.53 | AS1M2 | 3919.81 |
| AM1C1  | 997.24  | AS1C1 | 5544.71 |
| AM1C2  | 1555.92 | AS1C2 | 6200.40 |
| AM1R1  | 2310.46 | AS1R1 | 3568.38 |
|        |         | AS1R2 | 3717.35 |
| AM2M1  | 4124.37 | AS2M1 | 456.56  |
| AM2M2  | 4684.92 | AS2M2 | 4658.67 |
| AM2C1  | 4847.77 | AS2C1 | 5328.16 |
| AM2C2  | 3932.36 | AS2C2 | 3768.99 |
| AM2R1  | 2303.55 | AS2R1 | 2944.97 |
| AM2R2  | 2465.26 | AS2R2 | 3042.34 |
| 3BS1C1 | 5031.67 | PS1C1 | 4387.41 |
| 3BM1C1 | 9544.81 | PS2C1 | 2758.91 |
| 3BS2C1 | 7027.91 | PM1C1 | 3451.08 |
| 3BM2C1 | 7876.10 | PM2C1 | 3491.59 |

表 20 三つ割筋かい付木造軸組が最大耐力に至るまでの消費エネルギー (kgf·cm)

| 試験体        | 載荷方向 | 1体目   | 2体目    | 平均    |
|------------|------|-------|--------|-------|
| No.1       | +    | 65.94 | 56.28  | 61.01 |
| (貫のみ)      | _    | 50.57 | 74.85  | 01.91 |
| No.2       | +    | 47.90 | 83.13  | 71.00 |
| (貫+下地)     | _    | 61.05 | 91.93  | 71.00 |
| No.3       | +    | 61.28 | 75.04  | 67 17 |
| (荒壁)       | _    | 62.14 | 70.21  | 07.17 |
| No.4       | +    | 38.86 | 39.10  | 25 41 |
| (中塗り壁)     | _    | 31.45 | 32.21  | 33.41 |
| No.5       | +    | 27.18 | 8.00   | 17.59 |
| (貫+下地+筋かい) | _    | 24.83 | 32.91  | 28.87 |
| No.6       | +    | 49.63 | 94.15  | 71.89 |
| (筋かい付荒壁)   | _    | 41.63 | 50.07  | 45.85 |
| No.7       | +    | 54.23 | 64.25  | 59.24 |
| (筋かい付中塗り壁) | _    | 66.66 | 107.73 | 87.20 |

表 21 竹小舞下地土塗り壁の最大耐力に至るまでの消費エネルギー (tonf·cm)

表 22 ボード下地壁の最大耐力に至るまでの消費エネルギー (tonf·cm)

| 試験体  | 仕上げなし   | 仕上げあり   |
|------|---------|---------|
| No.1 | 507.54  | 1048.95 |
| No.2 | 437.02  | 1145.86 |
| No.3 | 1328.47 | 1150.02 |
| No.4 | 1275.13 | 865.13  |
| No.5 | 934.16  | 764.62  |







図 89 筋かいの有無による土塗り壁の消費エネルギーの変化の違い

# 第4章 木造住宅の常時微動計測に基づく振動特性評価

木造住宅は、構法において在来軸組、ツーバイフォー、プレハブなどのように多様なものがあり、屋 根仕上げや壁仕上げも多種の材料が用いられている。また、地域によって独特の構法、間取りや屋根 仕上げなどが伝承されている。さらに、建築年代によっても異なる。したがって、木造住宅の振動特 性を一律に取り扱うことは難しい。

建物の地震時挙動を明らかにし、建物の耐震性を判定するには、建物の動力学特性を決定づける基本的な構造パラメータである質量、剛性、減衰係数を精度良く評価することが不可欠である。しかし ながら、木造住宅の場合には、これらの諸量を評価することは、一般に難しく、不確定性を含まざる を得ない。

一方、建物の振動特性を評価する方法として、常時微動計測が挙げられる。建物の周辺地盤、各階 床位置、小屋組位置で桁行および張間方向の振動を計測することによって、建物のスペクトル解析か ら固有振動数および減衰を評価することができる。さらに、木造住宅の各層の重量を設計図書あるい は現地調査により略算的に評価するとともに、微動計測から得られる固有振動数を用いて、固有値解 析から剛性を求めることができる。

従来、木造住宅の耐震設計ならびに耐震性の判定は、一般に、壁量のみによってなされているが、 微動計測により、木造住宅の振動特性の評価に併せて、微少な振幅レベルではあるが、初期剛性を推 定し、耐震性の判断指標として捉えることができる。

# 4.1 阪神・淡路地域で倒壊を免れた住宅

1995年兵庫県南部地震以後、芦屋市・西宮市などで木造建物を中心とした被害調査を行った<sup>3),4),34)</sup>が、2月以降、倒壊を免れた在来軸組構法及びツーバイフォーの住宅について常時微動計測を行う機 会を得た。淡路島の一宮町においても、同様に大きな被害を免れた、当地の伝統的構法である錏(し ころ)造の住宅について、常時微動計測を行った<sup>34)</sup>。ここでは、常時微動計測により得られた各建物 の固有周期及び減衰定数について述べる。

#### 4.1.1 常時微動計測の概要

1995年2月19日に、兵庫県芦屋市西部地域において、軸組構法の木造住宅4棟を<sup>8)</sup>、3月19日に 淡路島の一宮町において、伝統的な錏造の木造住宅1棟、5月15日に神戸市東灘区において、ツーバ イフォー住宅2棟を含む、4棟の木造住宅について常時微動計測を行った。表23に、計測建物7棟の 概要、被害状況及び壁率を示す。図90~93に、芦屋市B、芦屋市C、東灘区2x4及び東灘区軸組の 平面図を示す。

| 表 23 | 常時微動計測を行っ | た建物の概要 |
|------|-----------|--------|
|------|-----------|--------|

| 計測建物    | 構造種別    | 建築年代   | 屋根      | 被害状況 | 壁率 (cm/ | m <sup>2</sup> ) 1 階/2 階 |
|---------|---------|--------|---------|------|---------|--------------------------|
|         |         |        |         |      | 張間方向    | 桁行方向                     |
| 芦屋市 A   | 木造軸組2階建 | 1930年頃 | 栈瓦葺     | 中破   | 42/48   | 26/39                    |
| 芦屋市 B   | 木造軸組2階建 | 1982年  | 石綿スレート葺 | 無被害  | 42/34   | 61/67                    |
| 芦屋市 C   | 木造軸組2階建 | 1984年  | 引掛け桟瓦葺  | 小破   | 35/54   | 47/47                    |
| 芦屋市 D   | 木造軸組2階建 | 1971年  | 洋瓦葺     | 小破   | 34/77   | 68/93                    |
| 一宮町しころ  | 木造軸組2階建 | 1993年  | 土葺和瓦    | 無被害  | 36/49   | 23/72                    |
| 東灘区 2x4 | ツーバイフォー | 1990年  | カラーベスト  | 軽微   | 38/62   | 142/132                  |
| 東灘区軸組   | 木造軸組2階建 | 1978年  | 日本瓦葺    | 無被害  | 40/50   | 45/55                    |



**図 90** 芦屋市 B 平面図



1階 平面図 1/100



2階 平面図 1/100

床面積 1階:109.72㎡ 2階:57.97㎡

図 91 芦屋市 C 平面図



図 92 東灘区 2x4 平面図





常時微動計測は、建物周辺地盤、2 階床及び小屋梁の3 個所に速度計 ((株) 東京測振製、VSE-15) を置き、張間、桁行、鉛直方向毎の振動を3 点同時に計測した。サンプリング周波数は 100Hz、フィ ルターは 0.1Hz のハイパス、計測時間は芦屋市では各棟、各方向とも3分であり、一宮町及び東灘区 では5分であった。一例として、芦屋市 B の計測波形を図 94 に示す。ここで、縦軸の単位は、速度 (cm/s) である。

#### 4.1.2 解析結果

# スペクトル特性及び固有周期

建物の周波数特性を調べるため、常時微動計測で得られた速度波形のフーリエスペクトル及びパ ワースペクトルを求めた。常時微動計測波形から、10.24 秒分のデータを 10~15 個所取り、それらの スペクトルの平均を求め、更に Parzen ウィンドウによる平滑化 <sup>55)</sup> を行っている。各建物の 2 階床 及び小屋梁位置での、張間及び桁行方向のフーリエスペクトルを図 95 及び図 96 に示す。横軸は周期 (秒) であり、波線が 2 階床位置の、実線が小屋梁位置のスペクトルを表している。また、表 24 に各 建物の張間及び桁行方向の、1 次及び 2 次固有周期を示す。

| 計測時物    | 1次固  | 有周期  | 2次固有周期 |      |
|---------|------|------|--------|------|
| 日例建物    | 張間方向 | 桁行方向 | 張間方向   | 桁行方向 |
| 芦屋市 A   | 0.31 | 0.38 | 0.15   | 0.17 |
| 芦屋市 B   | 0.18 | 0.09 | 0.11   | 0.05 |
| 芦屋市 C   | 0.17 | 0.19 | 0.07   | 0.09 |
| 芦屋市 D   | 0.27 | 0.17 | 0.09   | 0.08 |
| 一宮町しころ  | 0.29 | 0.27 | 0.13   | 0.18 |
| 東灘区 2x4 | 0.21 | 0.10 |        |      |
| 東灘区軸組   | 0.22 | 0.19 | 0.09   | 0.09 |

表 24 建物の固有周期(秒)

芦屋市Aは、建設時期が古く、壁量も少ないことと、地震により柱と壁に隙間が生じるなどの被 害を受けていることもあり、張間及び桁行方向の1次固有周期は、0.31 秒及び 0.38 秒と比較的長く なっている。

芦屋市 B は、地震による被害はなく、しかも建築時期も最近であり、耐力壁量も多く、高い剛性 を有している。また、軽い屋根材料を使用していることから、張間及び桁行方向の1次固有周期は、 0.18 秒及び 0.99 秒と短い。

芦屋市Cは、壁にひび割れ、柱がわずかに傾斜しているなどの被害が見られたが、張間及び桁行方 向とも 0.17~0.19 秒の固有周期となっている。また、芦屋市 D は、小屋組が一部破損し、瓦の落下 などの被害が見られた。桁行方向に比べて張間方向の壁量が少ないため、張間方向の固有周期が長く



図 94 常時微動計測で得られた速度波形~芦屋市 B 桁行方向~

なっている。

東灘区軸組は、張間方向及び桁行方向ともに、壁の量及び配置が適切で、無被害であった。固有周 期も、張間、桁行方向ともに 0.2 秒前後の値となっている。

一宮町しころは、前述の建物と同じ軸組構法であるが、淡路島の伝統的な錏造りで、写真 に見ら れるように屋根を大きく美しく見せる独特のデザインとなっている。常時微動計測を行った建物は無 被害であったが、構造的には、重い土葺き本瓦屋根でありながら、1 階部分と2 階 (半2 階) 部分が分 離しているなど、耐震性能上の問題を有しており、多くの錏造り建物は、大破、倒壊の大きな被害を 受けている。本建物の固有周期は、張間、桁行方向とも約 0.3 秒と長くなっている。

東灘区のツーバイフォーは、間口が狭く、桁行方向に長い建物で、桁行方向には十分な壁量を有し ているが、張間方向の壁量が少ない。したがって、固有周期は、桁行方向は 0.1 秒、張間方向は 0.2 秒と違いが見られる。この建物の周囲には、大きな被害を受けた木造建物が多くあったが、この建物 は、壁にひび割れなどの軽微な被害に留まっている。地震時の揺れが強かった南北方向が、剛性の高 い桁行方向であったことが幸いしているとも考えられる。

# 減衰定数

パワースペクトルから減衰定数を評価した。芦屋市 C の張間方向で約 3%、一宮町しころの張間方 向で 5.6%程度、東灘区軸組の張間方向で約 4%、桁行方向で 5.8%となっている。今回計測を行った 建物では、減衰定数は 1%から 6%までばらついている。常時微動レベルのごく振幅の小さい範囲で の振動であるため、大地震を対象とする建物の振動特性とは異なる。

## 4.1.3 まとめ

阪神・淡路地域で大被害を免れた木造住宅について行った常時微動計測のスペクトル解析結果を示 した。地震による被害を受けた建物の被災前の振動特性は不明であること、また、微動レベルの小さ な振動を対象にしていることなどに留意する必要がある。

2節で実験対象とした、SI 邸や TU 邸の損傷を与える前後での固有周期の変化と比べても、大地震 にあっても倒壊を免れているだけあって、これらの住宅は固有周期が短い。十分な剛性と保有耐力が あったと考えられる。

被災地域での建物の微動計測に際し、ご協力を賜りました住民の方々に厚くお礼申し上げます。

## 4.2 京の町家

京都には、伝統的な構法の住宅である町家がある。鰻の寝床とも呼ばれる奥行きの長い平面構成で あり、張間方向の壁が少ないため、耐震上不利であると考えられる。しかし、町家の振動特性はよく



図 95 常時微動波形のパワースペクトル (芦屋市4棟)



わかっておらず、把握する必要がある。本節では、京都の伝統的木造建築である町家の振動特性を把 握するために行った常時微動計測について、その概要と建物の振動特性について述べる。

## 4.2.1 常時微動計測の概要

1995年6月4日に2棟(H邸、K邸)、1996年2月26日に1棟(S邸)の町家を対象に、常時微動計 測を行った。H邸は、額縁付のむしこ窓の前に屋根付の大きな看板を出す薬屋で、表の店舗部分と奥 の居住部を玄関部で結んだ表屋造の形式、明治時代初期の建築である<sup>56)</sup>。いずれの町家も、大きく 「表」・「中」・「奥」の3つの部分にわかれており、いわばこの3戸が1体となったような平面となっ ているが、2階部分は床や廊下で「表」と「中」が結ばれている。微動計測は「中」の部分について 行っている。

常時微動計測は、建物周辺地盤、2 階床及び小屋梁の3 個所に 4.1 節と同じ速度計 ((株) 東京測振 製、VSE-15) を置き、張間、桁行、鉛直方向毎の振動を3 点同時に計測した。サンプリング周波数は 100Hz、フィルターは 0.1Hz のハイパス、計測時間は、H 邸、K 邸では 5 分間、S 邸では 10 分間で あった。

## 4.2.2 スペクトル特性及び固有周期

建物の周波数特性を調べるため、常時微動計測で得られた速度波形のフーリエスペクトル及びパ ワースペクトルを求めた。常時微動計測波形から、10.24 秒分のデータを 10~15 個所取り、それらの スペクトルの平均を求め、更に Parzen ウィンドウによる平滑化 <sup>55)</sup> を行っている。各建物の 2 階床 及び小屋梁位置での、張間及び桁行方向のフーリエスペクトルを図 97~99 に示す。横軸は周期 (秒) であり、波線が 2 階床位置の、実線が小屋梁位置のスペクトルを表している。また、表 25 に、各建 物の張間及び桁行方向の固有周期を示す。

1次固有周期を見ると、いずれの町家も張間方向で0.32~0.44秒と長くなっている。鰻の寝床と呼 ばれるほど奥行きの長い平面であるので、張間方向の固有周期が長いのは仕方のないところである が、桁行方向の固有周期も0.18~0.25秒とやや長い。H邸の張間方向のフーリエスペクトルには、ね じれ振動によるものと考えられる小さなピークが見られる。

|    | 桁行方向 |      | 張間方向 |      |
|----|------|------|------|------|
|    | 1次   | 2次   | 1次   | 2次   |
| Η邸 | 0.25 | 0.13 | 0.32 | 0.14 |
| K邸 | 0.18 | 0.11 | 0.44 | 0.20 |
| S邸 | 0.20 | 0.09 | 0.35 | 0.16 |

表 25 各町家の固有周期 (秒)


図 97 H 邸 フーリエスペクトル (左: 桁行方向、右: 張間方向)



図 98 K 邸 フーリエスペクトル (左: 桁行方向、右: 張間方向)



図 99 S 邸 フーリエスペクトル (左: 桁行方向、右: 張間方向)

### 4.2.3 まとめ

京都の伝統的木造建築である町家3棟を対象に常時微動計測を行った。桁行・張間方向の卓越周期 に関する検討のみ行ったが、特に張間方向の固有周期が長くなっている。張間方向の剛性が極めて小 さいと言える。桁行方向についても、固有周期は長めであり、剛性は小さいと考えられる。また、奥 行きが長いので、張間方向の振動には建物のねじれ振動も含まれている。

床面の面内剛性も小さいので、床面が上下に振動するなど、建物全体ではとても複雑な動きをして いると思われるが、本計測では十分な計測ができていない。床面の上下動や、平面的にも何カ所か同 時に計測を行う必要がある。

対象とした町家はすべて、保存建物として認定されている<sup>57)</sup>が、常時微動計測の結果からは、耐 震上不利となる傾向が見られるので、何らかの耐震性向上の対処をする必要がある。しかし、建物の 形状が複雑であるので、耐震上不利な個所や補強のしどころなどを判定することが難しいのが現状で あり、この問題も重要である。

# 4.3 戦前長屋と耐震補強住宅

#### **4.3.1** 戦前長屋の振動特性

阪神・淡路大震災で大きな被害を受けた木造長屋の振動特性を調べるため、京都市内にある戦前長 屋と呼ばれる木造2階建長屋1棟の常時微動計測を行った。

微動計測は、建物の1階床(もしくは土間コンクリート上)、2階床及び小屋梁の3個所に速度計を置 き、張間方向、桁行方向及び鉛直方向毎の振動を同時計測した。サンプリング周波数は100Hz、フィ ルターは0.1Hzのハイパスとした。表26に、計測位置及び張間方向と桁行方向の固有周波数を示す。

|            | 計測位置      |      |      |     | 固有周波数 (Hz) |      |      |      |
|------------|-----------|------|------|-----|------------|------|------|------|
| 建物         |           |      |      |     | 張間方向       |      | 桁行方向 |      |
|            |           |      |      |     | 1次         | 2次   | 1次   | 2次   |
| 戦前長屋       | 1 階床 (土間) | 2 階床 | 小屋梁  |     | 4.00       | 9.38 | 2.73 | 4.79 |
| 京都 MO(補強前) | 地表        | 1 階床 | 2 階床 | 小屋梁 | 3.71       | 7.03 | 3.81 | 8.89 |
| 京都 MO(補強後) | 地表        | 1 階床 | 2 階床 | 小屋梁 | 3.81       | 8.79 | 4.10 | 9.08 |

表 26 戦前長屋と耐震補強住宅の固有振動数

図 100 に、戦前長屋のスペクトルを示す。左が張間方向、右が桁行方向である。この建物は 7 戸長 屋で、建物の短辺 (張間) 方向に壁で 7 戸に区切られている。1 戸辺りでは狭小間口となっており、建 物の長辺 (桁行) 方向には壁がほとんどない構造となっている。したがって、建物の長辺方向 (桁行) 方向の 1 次固有振動数は 2.73Hz と低くなっており、剛性が低いことを示している。 前述の京町家と戦前長屋では、軸組構造などは異なるが、1方向の剛性が著しく低いという点は共 通している。



図 100 戦前長屋建木造住宅のスペクトル

# 4.3.2 耐震補強工事による振動特性の変化

耐震改修を行った建物において、補強工事の効果が建物の振動特性にどのように現れるかを調べる ために、補強工事前後に常時微動計測を行った。

対象とした建物は、2 階建て軸組構法木造住宅であり、戦前に建られた郊外型町家造りであったが、 洋間の増設などの増改築がなされた建物である。

構造補強のための主要な工事は、南側1階のサンルームと洋間において、構造合板 (厚さ12mm) 片 面張りによる壁の補強を4個所、通し柱に桧柱 (120x120) 添補強を2個所 (1階と2階)、短冊金物に よる柱脚の基礎コンクリートへの緊結を1個所、2階南側において、同様な壁補強を2個所、柱と梁・ 桁接合部のL型金物補強である。その他には、2階のコンクリート床バルコニーの撤去である。

#### 耐震補強による振動特性の変化

補強工事前後の常時微動のスペクトルを図 101 に示す。2 階床及び小屋梁のスペクトルは、地表の スペクトルで割った伝達関数として表している。

建物周辺の地表面でのスペクトルから、3Hz 付近にピークが見られるが、その他にはなだらかな ピークが 10 数 Hz 以上に見られ、全般的にはかなり固い地盤であると考えられる。

建物の桁行 (NS) 方向のスペクトルから、補強工事前では 3.8Hz、8.9Hz 付近にピークが見られ、1 次及び 2 次の固有周波数と判断される。補強工事後は、4.1Hz、9.1Hz に移動している。張間 (EW) 方 向の補強工事前の固有周波数は、1 次が 3.7Hz、2 次が 7.0Hz であり、補強工事後には、3.8Hz、8.8Hz と少し高くなっている。 本建物は、北側に比べ、南側は開口部が多く、壁量も少ないので剛性が低くなっている。したがっ て、ねじれが生じやすいため、ねじれ振動も合わせて計測した。2 階の北側と南側では、補強工事前 には、スペクトル振幅が南側が2 倍程度大きくなっていたが、補強工事後は、南側の振幅が減少して いる。また、建物全体のねじれ振動数は、補強工事前では 4.9~5.0Hz 付近であったが、補強工事後 は 5.3Hz となっており、ねじれ剛性も補強により高くなっている。



図 101 耐震補強木造住宅のスペクトル

### 建物剛性の推定

建物の重量を推定し、固有値解析から得られる固有周波数と微動計測による固有周波数との関係か ら、建物の剛性を推定する。

建物の詳細な図面を得られなかったので、常時微動計測時に作成した見取り図から各階の床面積を 算定し、建物重量算定のための標準値を用いて建物重量を求めると、1 階が 21.2ton、2 階が 10.5ton である。この建物重量を用いた固有値解析から固有周波数が、常時微動計測による固有周波数に一致 するように建物剛性を求めた。 表 27 に推定結果を示す。表より、耐震補強後の建物剛性は、NS 方向で 16%、EW 方向で 5.5%程度 高くなっている。耐震補強が建物南側の一部分に限定されていたが、耐震補強の効果が見られる。な お、EW 方向よりも NS 方向の剛性変化が大きいのは、NS 方向の壁補強の割合が大きいためである。

耐震改修による補強効果を確認する手段の一つとして、常時微動計測が有効であると判断される。 今後、耐震改修の建物事例に対して数多く常時微動計測を行うことによって、建物全体の振動特性改 善に有効な耐震補強方法を見いだすことが可能となる。

|       |     | 1次固有周波数 | 推定剛性 (1 層) | 推定剛性 (2 層) |
|-------|-----|---------|------------|------------|
|       |     | (Hz)    | (ton/cm)   | (ton/cm)   |
| NS(桁  | 補強前 | 3.81    | 15.2       | 10.1       |
| 行) 方向 | 補強後 | 4.10    | 17.7       | 11.7       |
| EW(張  | 補強前 | 3.71    | 13.0       | 10.5       |
| 間) 方向 | 補強後 | 3.81    | 13.7       | 11.1       |

表 27 建物剛性の推定

# 4.4 大阪府、兵庫県下の住宅 15 棟

本節では、木造住宅の常時微動計測を行うことにより、木造住宅の振動特性を把握し、建物の構造 要素との関連性について考察し、また、初期剛性推定を行い、木造建物の耐震性評価を行うことを目 的として、大阪、神戸などの地域において、在来軸組構法を主として建築年代が異なる15棟の木造 住宅を対象に行った常時微動計測について述べる。

## 4.4.1 大阪、神戸などの地域における木造住宅の微動計測

#### 常時微動計測の概要

1997年12月22,23日及び1998年1月9,10日の4日間に渡り、大阪府吹田市、阪南市、田尻町、枚 方市、門真市、大阪市及び兵庫県神戸市において、計15戸の木造住宅の常時微動計測を行った。表 28に対象建物の概要について示す。また、同様に図102~図116に建物の平面図を示す。

軸組構法が大半であるが、建築年代は江戸時代から 1994 年まで幅広く分布している。神戸 MO 邸 のような新構法のモデル住宅や、吹田 MI 邸など建築家の手になる住宅、増改築を繰り返して現在に 至っている阪南 AR 邸や門真 NA 邸など、一口に木造住宅と言っても様々な種類の建物である。



図 102 吹田 MI 邸



**図 103** 吹田 O 邸



図 104 吹田 SI 邸



図 105 吹田 KI 邸

図 106 枚方 YA 邸





1F PLAN S:1/100

RF PLAN

図 107 阪南 MI 邸









図 108 阪南 KA 邸







図 110 泉南 AR 邸



図 111 大阪 SU 邸



8,190

2,/30

10,920





図 112 大阪 AO 邸



図 113 神戸 YA 邸



1,200

3,000

2,100

906

1,200



1F PLAN S.1/100



図 114 神戸 SI 邸

1,500 1,800 1,200 900 5,700 1,800 1





表 28 大阪、神戸などで微動計測を行った建物の概要

|         |          | 1    |                                      |       |      |                    |                |
|---------|----------|------|--------------------------------------|-------|------|--------------------|----------------|
| 建物名称    | 所在       | 建設年  | $     延床面積               (m^2)     $ | 構造    | 屋根   | 内壁                 | 外壁             |
| 吹田 MI 邸 | 吹田市古江台   | 1985 | 118.59                               | 木造2階建 | 金属板  | ラスボード・<br>プラスタ – 塗 | ラスボード          |
| 吹田〇邸    | 吹田市古江台   | 1957 | 105.78                               | 木造平屋建 | 瓦葺き  | 綿壁                 | ラスモルタル         |
| 吹田 SI 邸 | 吹田市古江台   | 1988 | 158.00                               | 木造2階建 | スレート | ボード・<br>クロス張り      | ラスモルタル         |
| 吹田 KI 邸 | 吹田市藤代台   | 1994 | 211.84                               | 木造2階建 | スレート | ボード・<br>クロス張り      | ラスモルタル         |
| 枚方 YA 邸 | 枚方市東香里新町 | 1985 | 126.90                               | 木造平屋建 | 瓦葺き  | 土塗壁                | ラスモルタル         |
| 阪南 MI 邸 | 阪南市尾岬町   | 1989 | 82.64                                | 木造2階建 | 瓦葺き  | ラスボード・<br>漆喰塗      | ラスボード・<br>漆喰塗  |
| 阪南 KA 邸 | 阪南市下出    | 1982 | 131.16                               | 木造2階建 | 瓦葺き  | 土塗壁                | ラスモルタル         |
| 阪南 KO 邸 | 阪南市新町    | 1981 | 93.58                                | 木造2階建 | 瓦葺き  | 土塗壁                | ラスモルタル         |
| 泉南 AR 邸 | 泉南郡田尻町   | 江戸時代 | 139.12                               | 木造平屋建 | 瓦葺き  | 土塗壁                | 土塗壁・漆喰塗        |
| 大阪 SU 邸 | 大阪市阿倍野区  | 1930 | 95.00                                | 木造2階建 | 瓦葺き  | 土塗壁・漆喰塗            | 土塗壁・漆喰塗        |
| 大阪 AO 邸 | 大阪市阿倍野区  | 1935 | 168.91                               | 木造2階建 | 瓦葺き  | 木ずり・<br>プラスター塗     | 木ずり・<br>プラスター塗 |
| 神戸 YA 邸 | 神戸市西区    | 1980 | 193.00                               | 木造2階建 | 金属板  | 漆喰塗                | ラスモルタル         |
| 神戸 SI 邸 | 神戸市北区    | 1977 | 89.30                                | 木造2階建 | スレート | 土塗壁                | ラスモルタル         |
| 神戸 MO 邸 | 神戸市須磨区   | 1995 | 179.98                               | 木造2階建 | 金属板  | PB・EP 塗り           | ラスモルタル         |
| 門真 NA 邸 | 門真市城垣町   | 1927 | 148.95                               | 木造2階建 | 瓦葺き  | モルタル塗              | ラスモルタル         |

# 計測方法

計測は、図 117 に示されるようなシステムで行った。建物周辺地盤、1 階床、2 階床及び小屋梁の 3~4ヶ所に速度計(振動技研製 UP - 255S)を設置し、建物の水平2方向(張間・桁行)と地表の3 方向を同時計測した。サンプリング周期を0.01 秒、0.1H zのハイパスフィルターとし、計測時間を 10 分間とした。

### 4.4.2 振動特性の評価

#### スペクトル解析

建物の周波数特性を調べるため、微動計測で得られた速度波形のフーリエスペクトルを求めた。微 動計測記録から振幅の安定した 10.24 秒分のデータを 15ヶ所取り、それらのスペクトルの平均を求 め、Parzen window により平滑化した。桁行および張間の各方向について、地盤に対する 2 階床およ び小屋梁のフーリエスペクトル比をそれぞれ 2 階床および小屋梁の伝達関数として求めた。各戸の解 析結果を図 118~132 に示す。上から、地盤のフーリエスペクトル、2 階床および小屋梁のフーリエ スペクトル、2 階床および小屋梁の伝達関数であり、左が桁行方向、右が張間方向である。

1,800 | 1,800 |





挿入

智 の 6 帖

2,400 S,400 I,800

図 116 門真 NA 邸



図 117 計測システム



図 118 吹田 MI 邸スペクトル解析結果



図 119 吹田 O 邸スペクトル解析結果



図 120 吹田 SI 邸スペクトル解析結果



図 121 吹田 KI 邸スペクトル解析結果



図 122 枚方 YA 邸スペクトル解析結果



図 123 阪南 MI 邸スペクトル解析結果



図 124 阪南 KA 邸スペクトル解析結果



図 125 阪南 KO 邸スペクトル解析結果



図 126 泉南 AR 邸スペクトル解析結果

# 建物の振動特性

各建物の1次および2次の固有振動数を表29に示す。1次固有振動数は、桁行方向で4.0~11.6Hz、 張間方向で2.7~9.2Hzの範囲である。ほとんどの建物で、桁行・張間方向での1次固有振動数に大 きな違いは見られないが、大阪SU邸のみ、古い長屋造りであり、桁行方向と張間方向とで1次固有 振動数の差が大きく、後に述べるように壁率も両方向での差が大きい。

各建物の減衰は、微動計測から求めたパワースペクトルと下の理論式<sup>58)</sup>を近似させることによって評価した。

$$|G(i\omega)|^{2} = \frac{S_{x}(\omega)}{S_{f}(\omega)}$$
  

$$|G(i\omega)| = \frac{1}{\omega_{n}^{2}} \cdot \frac{1}{\sqrt{\left\{1 - (\omega/\omega_{n})^{2}\right\}^{2} + 4h^{2}(\omega/\omega_{n})^{2}}}$$
(20)

ここで  $G(i\omega)$  は、単位の振幅を有する正弦波外乱に対する系の応答振幅を表し、伝達関数(Transfer function)と呼ばれる。 $S_f(\omega)$  および  $S_x(\omega)$  は、それぞれ外乱と応答のパワースペクトル密度を示す。 また、 $\omega_n$  は系の固有振動数、h は減衰定数である。このようにして求めた各建物の1次および2次の 減衰定数を併せて表 30 に示す。

|         | 固有振動数 (Hz) |       |      |       |  |  |
|---------|------------|-------|------|-------|--|--|
| 建物名称    | 桁行         | 方向    | 張間方向 |       |  |  |
|         | 1次         | 2次    | 1次   | 2次    |  |  |
| 吹田 MI 邸 | 11.62      | 25.00 | 7.62 | 17.25 |  |  |
| 吹田O邸    | 6.73       |       | 6.69 |       |  |  |
| 吹田 SI 邸 | 7.19       | 13.76 | 9.19 | 16.90 |  |  |
| 吹田 KI 邸 | 7.49       | 11.45 | 7.24 | 15.71 |  |  |
| 枚方 YA 邸 | 7.84       |       | 6.09 |       |  |  |
| 阪南 MI 邸 | 11.16      | 24.22 | 7.86 | 18.46 |  |  |
| 阪南 KA 邸 | 6.90       | 15.90 | 5.79 | 14.13 |  |  |
| 阪南 KO 邸 | 5.51       | 11.65 | 6.99 | 13.38 |  |  |
| 泉南 AR 邸 | 4.12       |       | 4.11 |       |  |  |
| 大阪 SU 邸 | 4.33       | 9.26  | 2.66 | 7.72  |  |  |
| 大阪 AO 邸 | 5.03       | 9.82  | 6.23 | 13.80 |  |  |
| 神戸 YA 邸 | 4.65       | 9.15  | 5.20 | 10.57 |  |  |
| 神戸 SI 邸 | 5.41       | 11.41 | 6.52 | 14.69 |  |  |
| 神戸 MO 邸 | 8.37       | 24.12 | 8.54 | 25.00 |  |  |
| 門真 NA 邸 | 4.04       | 7.41  | 5.89 | 11.82 |  |  |

表 29 各建物の固有振動数

表 30 各建物の減衰定数

|         | 減衰定数 (%) |      |      |      |  |  |
|---------|----------|------|------|------|--|--|
| 建物名称    | 桁行       | 方向   | 張間方向 |      |  |  |
|         | 1次       | 2次   | 1次   | 2次   |  |  |
| 吹田 MI 邸 | 5.12     | 4.03 | 3.76 | 5.8  |  |  |
| 吹田O邸    | 6.14     |      | 4.28 |      |  |  |
| 吹田 SI 邸 | 5.26     | 5.04 | 5.24 | 9.64 |  |  |
| 吹田 KI 邸 | 8.25     | 6.93 | 7.89 | 4.78 |  |  |
| 枚方 YA 邸 | 3.97     |      | 3.67 |      |  |  |
| 阪南 MI 邸 | 3.34     |      | 5.99 |      |  |  |
| 阪南 KA 邸 | 6.26     | 2.93 | 5.28 | 5.55 |  |  |
| 阪南 KO 邸 | 4.98     | 5.71 | 5.51 | 6.39 |  |  |
| 泉南 AR 邸 | 6.01     |      | 5.46 |      |  |  |
| 大阪 SU 邸 | 5.04     | 3.70 | 8.78 | 8.17 |  |  |
| 大阪 AO 邸 | 5.39     | 6.15 | 5.69 | 5.87 |  |  |
| 神戸 YA 邸 | 4.28     | 4.90 | 4.40 | 5.27 |  |  |
| 神戸 SI 邸 | 5.49     | 4.21 | 4.36 | 2.73 |  |  |
| 神戸 MO 邸 | 4.38     | 8.35 | 6.55 | 3.77 |  |  |
| 門真 NA 邸 | 5.42     | 6.47 | 6.06 | 4.17 |  |  |



図 127 大阪 SU 邸スペクトル解析結果



図 128 大阪 AO 邸スペクトル解析結果


図 129 神戸 YA 邸スペクトル解析結果



図 130 神戸 SI 邸スペクトル解析結果



**図 131** 神戸 MO 邸スペクトル解析結果



図 132 門真 NA 邸スペクトル解析結果

# 4.4.3 建物の壁率と剛性の関係

建物の平面図及び計測時の実測に基づき、無開口壁のみを考慮して壁率を算定した。また、文献 59 で説明されている方法により建物重量を略算した。表 31 に建物の重量、床面積および壁率を示す。壁 率は、ほとんどの住宅について、1 階および 2 階とも桁行方向と張間方向で大きな差はないが、大阪 SU 邸のみ張間方向の壁率が著しく小さくなっている。特に 1 階は桁行方向の約 1/7 である。建物の 重量は、算定方法 <sup>59)</sup> により床面積に依存するので、床面積の大きい住宅や 1 層の重量が大きくなっ ている。

|         | 重量 (tonf) |       | 床面積 (m <sup>2</sup> ) |        | 壁率 (cm/m <sup>2</sup> ) |       |      |      |
|---------|-----------|-------|-----------------------|--------|-------------------------|-------|------|------|
| 建物名称    |           |       |                       |        | 桁行方向                    |       | 張間方向 |      |
|         | 1層        | 2 層   | 1階                    | 2 階    | 1階                      | 2 階   | 1階   | 2 階  |
| 吹田 MI 邸 | 12.94     | 9.16  | 68.74                 | 82.48  | 59.8                    | 37.1  | 94.2 | 43.6 |
| 吹田O邸    | 16.67     | _     | 98.37                 |        | 36.5                    |       | 26.8 |      |
| 吹田 SI 邸 | 24.21     | 9.67  | 128.15                | 71.63  | 69.9                    | 47.6  | 45.7 | 47.6 |
| 吹田 KI 邸 | 26.96     | 15.69 | 129.18                | 112.91 | 41.6                    | 37.6  | 39.5 | 40.0 |
| 枚方 YA 邸 | 24.49     | -     | 121.32                |        | 30.0                    |       | 37.9 |      |
| 阪南 MI 邸 | 11.60     | 7.50  | 54.39                 | 44.49  | 73.3                    | 66.5  | 32.2 | 52.8 |
| 阪南 KA 邸 | 18.95     | 12.56 | 68.23                 | 62.94  | 42.0                    | 43.4  | 40.3 | 47.7 |
| 阪南 KO 邸 | 14.99     | 5.23  | 63.76                 | 29.81  | 43.9                    | 59.5  | 54.9 | 76.3 |
| 泉南 AR 邸 | 42.44     | —     | 138.93                |        | 33.2                    |       | 45.3 |      |
| 大阪 SU 邸 | 15.94     | 10.26 | 51.79                 | 32.26  | 135.4                   | 101.2 | 21.1 | 29.5 |
| 大阪 AO 邸 | 33.22     | 11.81 | 123.80                | 41.82  | 37.5                    | 47.3  | 45.2 | 53.9 |
| 神戸 YA 邸 | 53.30     | 25.33 | 220.24                | 52.39  | 34.3                    | 68.2  | 46.0 | 58.8 |
| 神戸 SI 邸 | 10.99     | 4.89  | 52.11                 | 34.56  | 51.8                    | 66.8  | 48.4 | 57.3 |
| 神戸 MO 邸 | 20.56     | 12.38 | 82.91                 | 82.26  | 44.3                    | 42.4  | 47.0 | 30.4 |
| 門真 NA 邸 | 13.24     | 3.34  | 32.80                 | 19.40  | 38.7                    | 76.1  | 45.7 | 39.1 |

表 31 建物の重量、床面積及び壁率

#### 壁率から剛性の推定

表 31 の壁率から次式により 1/120rad 変形時の割線剛性を求めると表 32 のようになる。

$$k_i = \frac{0.13w_i S_i}{\frac{h_i}{120}} \tag{21}$$

ここで、 $w_i$ は各階の壁率、 $S_i$ は各階の床面積、 $h_i$ は階高を表し、0.13は壁倍率1に対応する1/120rad 変形時の耐力 (tonf/m)である。

|         | 壁率から算定した剛性 |     |      | 計測値から推定した剛性 |       |       |       |       |
|---------|------------|-----|------|-------------|-------|-------|-------|-------|
| 建物名称    | 桁行方向       |     | 張間方向 |             | 桁行方向  |       | 張間方向  |       |
|         | 1階         | 2 階 | 1階   | 2階          | 1階    | 2階    | 1階    | 2階    |
| 吹田 MI 邸 | 2.4        | 1.8 | 3.7  | 2.1         | 189.4 | 85.7  | 68.7  | 48.3  |
| 吹田〇邸    | 2.1        |     | 1.5  |             | 30.4  |       | 30.1  |       |
| 吹田 SI 邸 | 5.2        | 2.0 | 3.4  | 2.0         | 89.5  | 41.6  | 159.1 | 57.6  |
| 吹田 KI 邸 | 3.1        | 2.5 | 2.9  | 2.6         | ×     | ×     | 114.9 | 77.3  |
| 枚方 YA 邸 | 2.1        |     | 2.7  |             | 60.6  |       | 36.6  |       |
| 阪南 MI 邸 | 2.3        | 1.7 | 1.0  | 1.4         | 129.5 | 79.6  | 58.3  | 51.0  |
| 阪南 KA 邸 | 1.7        | 1.6 | 1.6  | 1.7         | 76.1  | 61.1  | 51.1  | 50.6  |
| 阪南 KO 邸 | 1.6        | 1.0 | 2.0  | 1.3         | 28.1  | 18.7  | 48.0  | 23.2  |
| 泉南 AR 邸 | 2.7        |     | 3.6  |             | 29.0  |       | 28.9  |       |
| 大阪 SU 邸 | 4.1        | 1.9 | 0.6  | 0.5         | 27.5  | 15.5  | 8.3   | 13.5  |
| 大阪 AO 邸 | 2.7        | 1.1 | 3.2  | 1.3         | 54.8  | 28.4  | 78.6  | 59.8  |
| 神戸 YA 邸 | 4.4        | 2.1 | 5.9  | 1.8         | 91.2  | 43.5  | 108.4 | 61.1  |
| 神戸 SI 邸 | 1.6        | 1.3 | 1.5  | 1.1         | 22.4  | 14.8  | 31.3  | 25.6  |
| 神戸 MO 邸 | 2.1        | 2.0 | 2.3  | 1.4         | 102.4 | 164.4 | 106.2 | 177.4 |
| 門真NA邸   | 0.7        | 0.9 | 0.9  | 0.4         | 12.5  | 5.1   | 25.6  | 13.6  |

表 32 壁率から算定した割線剛性と計測値から推定した剛性(tonf/cm)

#### 固有振動数から剛性の推定

スペクトル解析により得られた固有振動数および表 31 の建物重量を用いて、15 棟の木造住宅の剛 性を推定する。

平屋建て住宅について、1 質点せん断型モデルとして非減衰自由振動の運動方程式

$$m\ddot{x} + kx = 0\tag{22}$$

から、

$$\begin{aligned} k &= m\omega^2\\ \omega &= (2\pi f)^2 \end{aligned} \tag{23}$$

により桁行方向および張間方向の剛性を算定した。ここで、mは建物の質量、f は固有振動数を表す。 2 階建て住宅の場合は、2 質点せん断型モデルの非減衰自由振動の運動方程式

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{cases} \ddot{x}_1 \\ \ddot{x}_2 \end{cases} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} = 0$$
(24)

について次式で示される固有方程式

$$det \left( -\omega^2 \left[ \begin{array}{cc} m_1 & 0\\ 0 & m_2 \end{array} \right] + \left[ \begin{array}{cc} k_1 + k_2 & -k_2\\ -k_2 & k_2 \end{array} \right] \right) = 0$$

$$(25)$$

から $k_1$ および $k_2$ を求めた。ここで、 $m_i$ 、 $k_i$ (i = 1, 2)は各層の質量および剛性を表す。

以上の方法により算定した推定剛性を表 32 に示す。但し、吹田 KI 邸の桁行方向の剛性については 表 29 の固有振動数に合う実数値を得ることができなかったので"×"としている。これは、重量を適 切に評価できなかったためと考えられる。

固有方程式から得た剛性は1/120radという大変形時の割線剛性と比べると遙かに大きく、両者に 明確な相関があるとは言い難い。したがって、木造建物の初期剛性を適切に評価するためには、常時 微動計測による固有値解析が有効である。しかし、固有方程式による剛性算定にも表 32 の吹田 KI 邸 のように、重量の値によって方程式の適当な解が得られないという問題があるので、建物の重量算定 を正確に行う必要がある。

#### 4.4.4 各建物の振動特性に関する考察

特徴的な住宅について、その振動特性を以下に述べる。

#### 吹田 MI 邸

大阪府吹田市にある、建築家の自宅兼事務所である。南北に細長い平面であり、桁行方向の方が、 張間方向に比べて固有振動数が高くなっている。しかし、同形状の大阪 SU 邸とは異なり、桁行方向、 張間方向ともに剛性は相当大きく、桁行方向の 1 層では約 190tonf/cm という値を得た。張間方向に ついても、大阪 SU 邸以外の住宅と比べても高い剛性を有している。阪南 MI 邸も、同一設計者によ るものであるが、似た傾向を示している。

### 大阪 SU 邸

大阪 SU 邸は、大阪市阿倍野区にある築 67 年の木造長屋 2 階建住宅である。この建物は間口が約 4.2mと狭小間口となっているいわゆる長屋であり、建物の短辺 (張間)方向には、壁がほとんど無い 構造となっている。したがって、短辺方向と長辺方向の平面的な剛性のアンバランスさは、建物の振 動特性にもあらわれている。即ち、1 次固有振動数は長辺(桁行)方向で約 4.33Hz、建物の短辺(張 間)方向の 1 次固有周波数は約 2.61Hz であり、桁行方向に比べて張間方向の剛性が小さくなってい ることがわかる。固有値解析により求めた剛性も、これに対応して、1 層および 2 層とも張間方向の 剛性が桁行方向に比べて小さい値となっている。張間方向については、1 層の剛性が 2 層の剛性より も小さい値となっており、地震時には張間方向の揺れにより 1 階部分が倒壊する恐れがあると考えら れる。桁行方向の伝達関数には、高い振動数で応答の卓越している部分が見られ、建物の床および小 屋組の剛性も低いために、建物全体が一体的にではなく、部分的振動を起こす特徴が見られる。

#### 神戸 YA 邸

桁行方向に比べて、張間方向の固有振動数が高くなっている。1 階の壁率は、それに対応して張間 方向の方が大きいが、2 階では桁行方向の壁率の方が大きくなっている。1 階の床面積が 220m2 と大 きいため、1 層の重量が 2 層の約 2 倍の 53.3tonf となっている。固有値解析により得られた各層の剛 性は、1 層および 2 層のいずれにおいても張間方向の方が桁行方向に比べて大きい。

#### 門真 NA 邸

昭和初期の建築であるが、何度か増改築を繰り返している。1 次固有振動数は、桁行方向で 4.0Hz、張 間方向で 5.9Hz であり、他の住宅に比べて特に低い振動数ではない。算定重量が 1 層で 13.2tonf、2 層 で 3.4tonf と小さいため、固有値解析から得られた剛性は、桁行方向については、1 層で 12.5tonf/cm、 2 層で 5.1tonf/cm と 15 棟のうち最も小さい値であるが、張間方向の剛性は、桁行方向の剛性の 2 倍 以上になっている。

# 4.4.5 まとめ

木造建物の復元力特性は非線形性が強いため、応答振幅によりその固有振動数が変化することが知 られている<sup>59)</sup>が、常時微動のようなごく小さい応答振幅において固有振動数に合うように剛性を求 めると、現行の設計規定である壁率から算定されるものに比べて相当大きく、両者の相関は見出せな い。現行の壁率規定では、考慮されるのは開口のない壁のみであり、たとえそれ以外の非耐力部分が 水平荷重の 1/3 を負担する<sup>38)</sup>ことを考慮に入れて 1/120rad 時の割線剛性を得たとしても、常時微 動計測の結果に基づいて行った固有値解析によって得られる剛性は、それより遙かに大きいため、建 物の初期剛性を適切に評価するには、壁率のみに頼るのは不十分であり、常時微動計測に基づく解析が有効かつ重要である。

# 4.5 まとめ~木造住宅の常時微動計測~

1995年兵庫県南部地震直後に、芦屋市や神戸市東灘区、淡路島の一宮町という地震被害の大きかっ た地域にあってなお、被害の大小はあるものの倒壊を免れた木造住宅の固有振動数は、被害が大き かったものを除いては、概ね高い値であり、地震を受ける前には十分高い剛性や耐力を有していたと 考えられる。しかし、桁行方向と張間方向で固有振動数の差が大きい住宅もあり、地震の揺れの方向 によって、被害の大小が決まっていたことを考えると、たまたま運がよかった、ということも被害が 小さかった理由の一つとなりうる。

大阪府下及び神戸市西部地域で常時微動計測を行った 15 棟について、建物重量算定を行い、それ に基づく固有値解析により微動レベルでの剛性を推定した (表 30)。壁量計算や静的加力実験結果か ら得られる剛性に比べると、遥かに大きな値となっている。木造建物が如何に非線形性が大きいか、 ということが明らかになった。

パワースペクトルの理論式との近似により得られる1次の減衰定数は、すべての建物について、およそ3~8%の範囲である。これは、あくまでも常時微動レベルでの減衰定数であり、木造建物の減衰のメカニズムが不明確なため、そのまま強震応答時の減衰定数とすることは難しい。

常時微動計測は、簡単に行うことができ、建物重量算定を正確に行えば、各層の剛性を推定できる ので、木造建物の振動特性評価の手段の一つとして、今後も多くの木造建物について実施し、結果の 蓄積を行うことが重要である。ただし、建物重量を正確に算定するために、部材や仕上げ材などの情 報を集めておく必要がある。

# 第5章 強震動下における木造建物の地震応答と耐震性評価

1995年兵庫県南部地震による阪神・淡路大震災では、特に建築時期の古い木造住宅で、倒壊・大破と いった甚大な被害が顕著であった。このように大きな被害が起こった原因を明らかにし、今後木造建 物について構造設計を行うためには、木造建物の強震動下での挙動を把握する必要がある。

本章では、1995年兵庫県南部地震による阪神・淡路大震災において甚大な被害を受けた木造住宅 について、強地震での地震応答解析を実施し、最大層間変形角や履歴消費エネルギーなどの耐震安全 性に関わる尺度を用いて応答性状を明らかにするとともに、必要とされる耐力や変形性能などの耐震 性を検証する。

#### 5.1 地震応答解析用モデル

総2階建木造住宅を対象にして、建物の重量別に分類し、2質点せん断型の振動モデルとする。履 歴復元力特性など地震応答解析のための動力学モデルを以下のように設定する。

#### 5.1.1 建物重量及び復元力特性の設定

建物重量は屋根や壁の仕上げによって表 33 に示すように重い建物、中程度の重さの建物、軽い建 物の 3 タイプを設定する <sup>59)</sup>。各層の床面積は 91.125m<sup>2</sup>、1、2 階の階高をそれぞれ 2.75m、2.5m と する。

各層の履歴復元力特性は、実在の木造住宅を対象に行った静的水平力載荷実験<sup>43)</sup> や耐力壁のせん 断載荷実験 (第3章)の結果等を勘案して、(26)式に示すように、ポリリニア型履歴特性とスリップ 型履歴特性の複合型とする<sup>60)</sup>。

$$\Phi = \beta \Phi_{QL} + (1 - \beta) \Phi_{SL} \tag{26}$$

ここで、 $\Phi_{QL}$ はポリリニア型履歴特性、 $\Phi_{SL}$ はスリップ型履歴特性、 $\beta$ は、両者の複合割合を決め る定数である。これら履歴特性の各分岐の剛性は、図 133 に示すように設定する。ポリリニア、ス リップ型履歴特性の比率  $\beta = 0.4$ を標準とする。ポリリニア型履歴特性における 1/30rad 変形時の 耐力は、1/120rad 変形時の耐力の  $\gamma_3$  倍であるとしているので、層間変形角が 1/30rad 時に最大耐力 に達し、その大きさは (26) 式より、1/120rad 変形時の耐力の  $\gamma = \beta\gamma_3 + (1 - \beta)$  倍になる。例えば、  $\beta = 0.4, \gamma_3 = 1.5$ の時、最大耐力は 1/120rad 変形時の耐力の 1.2 倍となる。

初期剛性の設定は、2.6 節で示した常時微動レベルでの剛性に比べると小さな値となるが、強震応 答では容易に大変形に達し、剛性を減じるので、2 節で得られた実在木造住宅の復元力特性に近づけ ている。中程度重量の建物の場合、ベースシアー係数 0.2、β = 0.4、A<sub>i</sub> 分布に従うとすると、各層 の剛性はそれぞれ、k<sub>1</sub> = 6.8, k<sub>2</sub> = 4.7(tonf/cm) である。

表 33 解析に使用した2階建て木造住宅モデルのパラメータ

| タイプ | 屋根仕上げ  | 壁の種類                     | 1 層重量 (tonf) | 2 層重量 (tonf) | 1、2 層重量比 R <sub>m</sub> |
|-----|--------|--------------------------|--------------|--------------|-------------------------|
| 重い  | 土葺き瓦   | 内壁: 土塗り壁<br>外壁: モルタル壁    | 27.25        | 27.79        | 1.02                    |
| 中程度 | 栈瓦     | 内壁: 土塗り壁<br>外壁: モルタル壁    | 20.05        | 15.32        | 0.76                    |
| 軽い  | カラーベスト | 内壁: ボード類大壁<br>外壁: サイディング | 17.41        | 10.97        | 0.63                    |

表 34 解析に用いたパラメータ

| パラメータ                                             | 値の範囲                                  | 標準値   |
|---------------------------------------------------|---------------------------------------|-------|
| ベースシアー係数 C <sub>0</sub>                           | $0.05, 0.1, 0.15, 0.2, 0.3 \sim 1.0$  | 0.2   |
| 2層の層せん断力係数への倍率 <i>ν</i>                           | 0.5, 0.75, 1.0, 1.25, 1.5             | 1.0   |
| $P_{1/30}/P_{1/120}$ for Quadri-linear $\gamma_3$ | 1.25, 1.50, 1.75, 2.0, 2.25, 2.50     | 1.5   |
| 1、2層重量比 R <sub>m</sub>                            | 0.4, 0.6, 0.8, 1.0, 0.63, 0.764, 1.02 | 0.764 |



図 133 各層の履歴復元力特性モデル

1、2層の変形角 1/120rad 時における耐力 P<sub>i</sub>は、現行の建築基準法施行令に基づき、次式で定める。

$$P_i = C_i W_i$$

$$C_i = Z R_i A_i C_0$$
(27)

ここで、 $A_i$  は層せん断力係数、地域係数 Z = 1.0、振動特性係数 = 1.0、は i 層以上の重量である。 地震応答解析においてベースシア係数  $C_0$  をパラメータとしているので初期剛性及び固有周期はベー スシア係数の関数として決定される。通常耐震設計に用いられる  $A_i$  分布は木造建物のような低層用 ではないため 2 層の層せん断力係数をパラメータ  $\nu$  で変化させた場合 ( $A_2 = \nu A_2$ )の地震応答解析も 行っている。2 章の水平力載荷実験の対象とした住宅で行った常時微動計測結果に基づく木造住宅の 減衰定数は、2.6 節で述べたように、3~8%の範囲であった (他の住宅についても、常時微動計測から 得られる減衰定数は同程度であった)が、ここでは、減衰は剛性比例型とし、1 次モード臨界減衰比 を 5%としている。また、3 章で述べたような、破壊が生じることにより耐力が減少することは考慮 に入れていないが、地震応答解析において P- $\Delta$  効果を考慮している。

#### 5.1.2 耐震安全性の判定尺度

木造住宅の地震応答解析において、建物の倒壊や大破などの耐震安全性を各層での最大変形角で判 定するのが一般的である。例えば、久田は、損傷を受けるが修復に莫大な費用がかかる手前の変形限 度として、層間変形角 1/60rad を挙げている<sup>13)</sup>。現行の壁量規定の基となっているのは、層間変形 角 1/120rad での耐力である。

一方、地震のように構造物が繰り返し変形を受ける場合には、損傷が繰り返しによって累積した後 に破壊するような累積破壊規範がより現実的である。しかしながら、木造建物の破壊メカニズムがよ く解っていないので、ここでは、瞬時破壊規範に対する判定尺度として最大層間変形角を、累積破壊 規範に対しては、履歴消費エネルギーを尺度として、地震応答解析から求めて検討を行う。

#### 5.1.3 入力地震動

地震応答解析に用いた地震波は、表 35 に示すように、1995 年兵庫県南部地震による神戸海洋気象 台での観測記録 JMA Kobe NS(最大加速度 818gal、最大速度 92.2cm/sec)、JR 鷹取での観測記録 JR Takatori NS(最大加速度 605.5gal、最大速度 122.7cm/sec)<sup>61)</sup>、JR 西明石駅での観測記録 JR Nisiakasi NS(最大加速度 473.8gal、最大速度 44.3cm/sec)<sup>61)</sup>、JR 宝塚駅での観測記録 JR Takarazuka NS(最大 加速度 683.6gal、最大速度 66.7cm/sec)<sup>61)</sup>、大阪ガス葺合供給部での観測記録 O-Gas Fukiai NS(最大 加速度 686.5gal、最大速度 55.0cm/sec) と、高層建築の動的解析によく用いられる強震記録 1940 El Centro NS(最大加速度 341.7gal、最大速度 38.1cm/sec) 及び 1968 Hachinohe NS(最大加速度 225gal、 最大速度 40.5cm/sec) である。最大速度は加速度を積分して求めている。図 134 に、地震応答解析に 用いた地震波を、図 135 にその速度応答スペクトル (減衰比 5%) をそれぞれ示す。



図 134 地震応答解析に使用した地震波



(a) 1995 年兵庫県南部地震において、神戸海洋気象台・JR 鷹取駅・JR 西明石駅・JR 宝 塚駅で観測された地震の速度応答スペクトル



(b) 1995 年兵庫県南部地震において、大阪ガス葺合供給所で観測された地震及び ElCentro、 八戸地震の速度応答スペクトル

図 135 地震応答解析に使用した入力地震波の速度応答スペクトル

| 地震波名称         | 観測点 (方向)       | 最大加速度 (gal) | 最大速度 (kine) |
|---------------|----------------|-------------|-------------|
| JMA Kobe      | 神戸海洋気象台 (南北)   | 818         | 92.2        |
| JR Takatori   | JR 鷹取駅 (南北)    | 605.5       | 122.7       |
| JR Nisiakasi  | JR 西明石駅 (南北)   | 473.8       | 44.3        |
| JR Takarazuka | JR 宝塚駅 (南北)    | 683.6       | 66.7        |
| O-Gas Fukiai  | 大阪ガス葺合供給部 (南北) | 686.5       | 55.0        |
| ElCentro      | El Centro (南北) | 341.7       | 38.1        |
| Hachinohe     | 八戸(南北)         | 225.0       | 40.5        |

表 35 地震応答解析に用いた地震波

#### 5.1.4 解析モデルの妥当性の検証

2章で実験対象とした住宅の復元力特性との整合性について、特に Quadri-linear と Slip の混合比 β について検討する。本解析モデルの主要なパラメータは、1) 建物重量、2) ベースシアー係数、3) 最 大耐力決定のための係数 γ の 3 つである。2 章の実験対象建物のうち、SI 邸について、復元力特性の 比較を行う。水平力載荷実験では、2 層の上部に外力を作用させたので、2 層の荷重と層間変形角の 関係を比較対象とする。

SI 邸、TU 邸、TA 邸、SU 邸、H 棟の 2 層の層間変形角と層間変形角が 1/120rad 時の耐力が 1 と なるように基準化した耐力の関係を、本解析モデルの復元力特性 ( $\gamma_3 = 1.5, \beta = 0.4$ の場合)と重ね て描くと、図 136 に示すようになる。Quadri-linear と Slip の混合比  $\beta$  によって、1/120rad 変形に至 るまでの復元力特性の折れ線が決定されるが、図 136 より、本解析モデルは実建物の包絡線の内側を 通っている。最大耐力は、Quadri-linear のパラメータ  $\gamma_3$  と  $\beta$  によって、1/120rad 変形時の耐力の  $\gamma = \beta\gamma_3 + (1 - \beta)$  倍に決定されるので、図のように  $\gamma_3 = 1.5$ とすると、実建物よりずいぶん小さい最 大耐力となっている。しかし、 $\beta = 0.4$ と固定して、土塗り壁が主な耐力壁の場合には、 $\gamma = 1.5$ 、合 板張やラスモルタル仕上げが主に用いられている建物では  $\gamma = 2\sim 2.5$ となるように設定すれば、う まく実建物の復元力特性を再現できると考えられる。

本解析モデルにおいて、1、2層の重量をSI邸と等しく、 $W_1 = 11.0, W_2 = 8.1$ tonfとし、初期剛性 が等しくなるように、ベースシアー係数を 0.55、最大耐力を等しくするために  $\gamma_3 = 2.125$  とする。

SI 邸 2 層の荷重と変形角の関係と、前述のパラメータ設定をした解析モデルに JR Takatori NS の 最大振幅を 2 倍にしたものを入力した場合の応答結果より得られる 2 層の復元力と層間変形角の関係 を重ねて、図 137 に示す。

図より、復元力特性はよく一致しており、Quadri-linear 成分の各勾配の設定と Quadri-linear と Slip の混合比  $\beta$  の値、Slip の設定は妥当であると言える。



#### 5.2 解析結果

中程度の重さの建物を対象にし、入力地震波 JMA Kobe NS の場合の地震応答解析例を示す。本解 析での標準的なパラメータの組み合わせ (表 34) である履歴復元力特性のパラメータ  $\gamma_3 = 1.5$ 、2 層 せん断力係数のパラメータ  $\nu = 1.0$ 、重量比  $R_m = 0.76$  で、ベースシア係数  $C_0 = 0.2$  とした場合の 時刻歴応答 (1 層及び 2 層の層間変形角、層間速度、履歴消費エネルギー及び履歴ループ) を図 138 に 示す。各パラメータの値はそれぞれ、各層の最大耐力が 1/120rad 変形時の耐力の  $\gamma = 1.2$  倍である こと、2 層の層せん断力係数が  $A_i$  分布に従うこと、1、2 層の重量は表 33 の中程度重量であることを 示している。

一般に総2階建では間取り等により、1階よりも2階の剛性が高くなる場合が多く、阪神・淡路大 震災において1階部分の崩壊が顕著であった被害状況と符合する。

2層の層せん断力係数を変化させた場合の1、2層の最大層間変形角及び履歴消費エネルギーを図 139 に示す。ν=0.4、即ち2層の剛性が標準 A<sub>i</sub> 分布に比べて小さい場合には、ベースシア係数が 0.2 より小さい範囲では2層の最大応答が増大し、ベースシア係数が 0.2 より大きい範囲では、νを大き く、即ち2層の剛性を高くすると1層の応答が大きくなる傾向がある。これは、阪神・淡路大震災に おいて、西宮市などで店舗つき住宅の被害が大きかったこと符合する。店舗つき住宅では、1 階部分 が店舗のために開放的となり剛性が小さいのに対し、2 階は住居部分であるために耐力で仕切られて おり、剛性が大きい。

1、2層の重量比 R<sub>m</sub> を変化させた場合の、1 層の最大層間変形角及び履歴消費エネルギーを図 140 に示す。R<sub>m</sub> の変化は、本解析においては総 2 階建の建物を想定しているので、建物の屋根や内外壁 の仕様による 1、2 階の重量の違いに相当する。一般には、1、2 階の床面積が異なるために 2 層の重 量が 1 層より小さいことによる重量差に相当する。ベースシアー係数が 0.2 を超える範囲では最大応 答は小さくなる。1、2 層の重量比の各層の最大変形角に与える影響は、ベースシアー係数が 0.4 以上 に十分確保されている場合には小さいことが判る。ベースシアー係数が 0.3 より小さいと、1 層の応 答が大きくなり倒壊の恐れがある傾向を示している。

復元力特性のパラメータ  $\gamma_3$  を変化させたときの 1 層の最大層間変形角及び履歴消費エネルギーを 図 141 に示す。ここで、 $\nu = 1.0$ 、 $R_m = 0.76$ 、 $\beta = 0.4$  である。 $\gamma_3$  は構造物の耐力の大小に関係する パラメータであり、 $\gamma_3 = 1.5$ 、 $\beta = 0.4$ の場合は、最大耐力が 1/120rad 変形時の耐力の 1.2 倍である ことを表している。

パラメータν、*R<sub>m</sub>、γ<sub>3</sub>*を変化させた場合の最大層間変形角応答は、ベースシア係数が 0.2 より小さ い範囲では増大するが、ベースシア係数が大きくなるにつれて小さくなる傾向が共通してみられる。 特に JMA Kobe のような入力に対して 1 層の最大変形角を 1/30rad までに留めるには 0.5~0.7 程度 以上のベースシア係数が必要である。

履歴消費エネルギーはベースシア係数が大きくなれば低下するが、ベースシア係数が 0.3 より小さ

くなれば履歴消費エネルギーも低下する。特に、ベースシア係数が 0.2 未満では、応答が不安定的で 一方向への塑性流れが大きくなり、履歴繰り返しをすることなく倒壊するため、見かけの履歴消費エ ネルギーは小さくなる。

次に、入力地震波の違いによる影響を調べるために、各地震波の最大速度を 50、75、100、125cm/sec に基準化した。ベースシア係数と 1 層の最大層間変形角の関係を図 142 に示す。ここでは標準パラ メータを有する中程度の重量の建物を対象としている。入力地震動の強度が大きくなれば、建物の耐 震性を確保するには、十分大きなベースシア係数を必要とし、建物の耐力の大きさのみでは不十分で 層間変形角の限界値と関連する変形性能が重要となる。

ほとんどのケースで、ベースシアー係数が大きくなると応答が小さくなるという傾向が見られたが、

- 中程度重量
- $\beta = 0.4$
- ν = 1.0 (層せん断力係数は A<sub>i</sub> 分布に従う)
- γ<sub>3</sub> = 2.25 (各層の最大耐力は、層間変形角 1/120rad 時の耐力の 1.5 倍)

という組合わせのケースでは、1層の応答が、ベースシアー係数が0.15のときには安定するが、ベー スシアー係数が0.2になると発散するという結果が得られた。1層の層間変形角の時刻歴応答を図143 に示す。

大地震時には、大きなベースシアー係数を有していることが有利になるのであり、ベースシアー係 数が 0.15 でもよいということには決してならないが、このように、微妙なところで崩壊に至るか至 らないかが決まってくるということも忘れてはならないことである。

# 5.3 おわりに

一般的な2階建木造住宅について、建物重量や復元力特性など動力学的モデルを構築して地震応答 解析を実施した。このような解析を通じて、木造建物の地震時の動的性状を、各層の層間変形角や履 歴消費エネルギーなどの耐震安全性の判定尺度を用いて明らかにすることを試みた。

本論では中程度重量の建物の解析結果について述べたが、重い建物や軽い建物についても同様の傾向を示した。

強震下では、一般に2層よりも1層の応答が大きくなることが、本解析からも明らかであり、阪神・ 淡路大震災で見られた被害と符合する。1、2層の層せん断力係数の値によって、2層が極端に剛性が 高くなると、1層の応答だけが著しく大きく発散してしまう現象が見られた。

同じモデルであっても、ベースシアー係数のわずかな違いによって、応答が発散するものと安定す るものが見られた。例えば、中程度重量のモデルに JR 鷹取駅で観測された地震波を入力した場合、



図 138 中程度重量建物の応答時刻歴 (JMA Kobe NS 入力時)



図 139 係数 ν の応答への影響 (JMA Kobe NS 入力時、中程度重量建物の場合)



図 140 1、2 層重量比 R<sub>m</sub> の応答への影響 (JMA Kobe NS 入力時)



図 141 係数 γ3 により復元力特性を変化させた場合の応答の変化 (JMA Kobe NS 入力時)







図 143 応答の不安定性

γ<sub>3</sub> = 2.25、すなわち最大耐力が 1/120rad 変形時の耐力の 1.5 倍とすると、ベースシアー係数が 0.15 では、1 層の応答が発散しないのに、ベースシアー係数が 0.2 では発散している。ベースシアー係数 が大きくなくともよい、ということではなく、地震の規模が大きくなると、応答が発散するか安定す るか、すなわち崩壊に至るか至らないかが、微妙な違いで決まってくることを示している。

木造建物の変形性能や耐力などの履歴復元力特性、更に破壊メカニズムなどに関する実験・研究は まだ少ない。特に、木造建物の各部や全体の動的実験がほとんどなされていない現状では、動的な観 点からの検討は、多くの課題があり今後更に進める必要がある。

# 第6章 まとめと今後の課題

# 6.1 まとめ

本論文では、在来構法木造住宅の静的・動的な挙動を把握し、耐震性能評価に結び付けることを目 的とした。まず、静的な観点において、既存の在来構法木造住宅や木造耐力壁の静的な耐震性能実験 を実施して、京都市内及び西宮市内に存在する木造住宅の復元力特性及び破壊性状を把握し、その重 要な耐力負担要素である耐力壁の力学特性を得るとともに耐震性能の再検討を行った。動的な観点か らは、主に京阪神地域の在来構法木造住宅を対象に常時微動計測や自由振動実験を実施して、固有振 動数、減衰定数及び初期剛性の評価を行った。更に、第2章で述べた静的実験結果に基づいて、一般 的な2階建木造住宅の復元力特性など動力学モデルを構築して地震応答解析を実施し、木造住宅の強 震動下での挙動を明らかにした。

これまでに述べた実験及び解析の結果得られた知見を簡単にまとめると以下のようになる。

## 6.1.1 総括

# 木造建物の静的な挙動に関して

第2章において、京都市内及び西宮市内の在来構法木造住宅と実験用木造軸組を対象とした水平力 載荷実験を行い、その静的外力に対する耐力と変形の関係、破壊性状を明らかにした。最大耐力時の 変形は層間変形角で1/30rad~1/20radと大きい。古い木造住宅では土塗り壁のせん断破壊、実験用 木造軸組では筋かいの損傷が顕著であった。

実験用木造軸組について、既往の耐力と変形の関係が数値的に得られている軸組耐力壁の実験結果 から、耐力壁の変形に応じた負担耐力を足し合わせることで、実験対象とした木造軸組の耐力と変形 の関係をほぼ正しく追跡できることを示した。

現在、木造住宅の耐震設計は壁量算定のみであると言っても過言ではない。これは耐力壁の見掛け の層間変形角が1/120rad時の耐力に基づくものであり、耐力壁以外の部分が耐力壁の1/2の耐力を 負担するとされている。第2章で得られた在来構法木造住宅の耐力と、耐力壁の耐力を足し合わせた ものを、このような耐力壁の評価に基づき比較すると、層間変形角1/120rad時の耐力は、第2章で 得られた結果、すなわち実際の木造住宅の耐力の方が大きい。木造住宅において、開口を含む構面や 床面、軸組そのものなど、耐力壁以外の耐力負担要素を無視することはできないが、木造住宅の主要 な耐震要素である耐力壁の評価に疑問が残る。

したがって、耐力壁の評価が妥当であるか再検証を行う必要があるので、第3章において、京都の 大工、左官職人により製作された木造耐力壁に関する実験を行い、その耐震性能の定量的な評価を、 現在用いられている壁倍率の再評価という形で行った。壁倍率の値について、筋かい付木造軸組では 現在の基準値1.5に満たないものも見られた。竹小舞下地土塗り壁の壁倍率は現在一律に0.5 とされ ているが、本実験結果ではそれを上回っており、竹小舞下地土塗り壁でも相当の耐力負担を見込める と思われる。

耐力壁の耐力と変形性能を考慮するために、竹小舞下地土塗り壁について、最大変形に至るまでに 消費したエネルギーの変動を求めた結果、筋かい付試験体のように損傷を受けて耐力を減少する場合 には、その後の消費エネルギーの増分が小さくなり、全消費エネルギーは大きくならず、大変形によ り損傷を受けると耐震上不利になる可能性があることを示した。

#### 木造建物の動的な挙動に関して

第4章では、主に京阪神地域の在来構法木造住宅を対象に、建物の固有振動数や減衰定数という振動特性を評価する簡便な方法である常時微動計測を行って、様々な地域、建設年代の木造住宅の振動 特性データの蓄積を行い、各住宅の微少変形域での振動特性に関する考察を行った。また、耐震補強 工事を行った住宅について、工事前後に常時微動計測を行って、剛性の変化を調べた結果、補強工事 効果の有効性を評価する方法として、常時微動計測が有効であることを示した。

第2章で得られた在来構法木造住宅の復元力特性及び第3章で得られた耐力壁の復元力特性を基 に、第5章の解析用モデルの復元力特性を構築し、第2章、第4章で得られた木造住宅の平均的な減 衰定数5%を設定して、2階建木造住宅の強震応答解析を行った。

解析用モデルの復元力特性を第2章のSI邸の2層の耐力と変形の関係と比較(図136、137)する と、包絡線がほぼ等しく、除荷時のスリップ特性も大きく外れてはおらず、解析用モデルの復元力特 性の設定は妥当であると言える。

最大変形や履歴消費エネルギーといった耐震性能評価尺度を用いて、建物のベースシアー係数とその尺度の関係を示し、最大耐力や建物重量、1、2層の剛性バランスが各層の最大変形や履歴消費エネルギーにおよぼす影響を明らかにした。1層の最大変形が大きくなる傾向が共通している。最大耐力が大きくなれば最大変形は小さくなる。建物の1、2層重量比が最大変形や履歴消費エネルギーに及ぼす影響は小さい。2層の剛性が大きいほど、1層の最大変形が大きくなって危険であると言える。

各章で得られた知見を以下に列挙する。

#### 6.1.2 実大建物の水平力載荷実験

木造建物の静的な外力に対する挙動及び破壊性状を把握するため、京都市と西宮市において、在来 構法木造住宅と実験用木造軸組を対象とした水平力載荷実験を行った。近隣に危険が及ばない範囲 で、建物が破壊に至るまで載荷を行った。また、載荷実験前後の振動特性を把握するために、常時微 動計測や自由振動実験を行った。これらの実験の結果、以下のことが明らかになった。 静的な実験について

- 実験対象とした在来構法木造住宅の最大耐力時の変形は、2層の層間変形角で1/30~1/20rad 程度である。桁行方向の載荷の場合、昭和初期の建築であるSI邸、TU邸でも、最大耐力時の 2層せん断力係数は約1.0と大きい。
- 2. 文献<sup>38)</sup>などに記載されている各種耐力壁の変形量ごとの耐力を参考に足し合わせを行い、実験結果と比較した。「非耐力壁部分が耐力壁の50%耐力を負担する」ことを考慮に入れたとしても、主要な耐力壁が土塗り壁の場合、層間変形角1/120rad時の耐力は実建物の方が2~3 倍大きい。
- 3. H棟のような単純な形であれば、筋かい構面の負担耐力、貫構面の負担耐力の和が載荷力に等しいとして、各構面の耐力を変形に応じて足し合わせることで、既往の木造軸組の実験結果<sup>41)</sup>から実大木造軸組構造の耐力と変形の関係をフォローできる。耐力を負担する部分の復元力特性を適切に評価して、建物全体の復元力特性を表現することが可能であると言える。
- しかし、耐力壁単体の復元力特性の足し合わせによって建物全体の復元力特性を表すことは難しい。耐力壁以外の部分の負担耐力は不明であり無視することはできないが、耐力壁の性能評価が適切であるかどうかという点に疑問が残るので、耐力壁の評価を見直す必要がある。

#### 常時微動、自由振動実験について

- 1. 実験対象住宅の卓越振動数は、桁行方向が 3.0~4.7Hz、張間方向が 2.4~4.0Hz であった。
- 2. 減衰定数はばらつきが大きいが、3%~8%の範囲であった。平均すると約5%である。
- 3. 重量算定に問題が残るが、固有値解析より得られる剛性は、水平力載荷実験の結果とほぼ等しい。

#### 6.1.3 木造耐力壁のせん断載荷実験

第2章の結果、木造耐力壁の復元力特性や壁倍率から木造建物の耐力や変形性能を推定することは 困難であることがわかった。その一つの要因として、木造耐力壁の評価が適切であるかどうか、とい う問題があるので、その耐震性能の定量的な再評価、特に、損傷状況の把握と壁倍率の再評価を目的 として、三つ割筋かい付木造軸組、竹小舞下地土塗り壁、ボード下地左官仕上げ壁のせん断載荷実験 を行った。その結果、以下の事柄が明らかとなった。

 E縮力のみ負担するとされている筋かいも、接合部を金物により緊結することによって、引張力を負担することができ、その結果、筋かい付木造軸組は、層間変形角 1/30rad 程度まで耐力を負担することができる。また、筋かい端部の接合金物の種類により、最大耐力に大きな違い

が見られる。ボルトと釘を併用する箱形金物より、木ネジで留めつけるプレート金物を使用す る方が、筋かい付木造軸組の最大耐力が大きい。

- 2. 筋かい付木造軸組の最大耐力は筋かい接合部の損傷によって決まる。その時筋かいに作用して いる軸力は、接合金物と筋かいの樹種の組合せが同じであれば、壁幅によらず、ほぼ等しい。
- 3. 筋かいのない軸組のみの場合、接合部をホールダウン金物で緊結していれば、大変形時に軸組 が崩壊することなく、耐力も単調増加傾向を示す。
- 4. 竹小舞下地土塗り壁は、ホールダウン金物で柱脚の引き抜けを防止することで、大きな変形性能 を発揮し、層間変形角で1/10rad まで変形させても耐力の大幅な減少は見られない。また、上述 の筋かい付軸組の実験結果との比較により、筋かいの有無による耐力の差は筋かい付軸組の耐 力で表される。荒壁土と中塗り土で差はあるが、荒壁土及び中塗り土の負担せん断応力は一定 している。筋かいがない試験体では、最大耐力は小さいが、最大耐力時の層間変形角は1/60rad ~1/30rad と大きく、また耐力低下も筋かい壁に比べて小さいので、粘り強い構造体であると 言える。
- 5. 最大変形 1/10rad に至るまでの消費エネルギーの変化を見ると、筋かい付の試験体では、筋かいに損傷を受け耐力が低下すると、消費エネルギーの増分が小さくなる。筋かいなしの試験体では、消費エネルギーは単調増加になっており、最大変形時の消費エネルギーは、筋かいなし試験体の方が大きくなることもある。このことからも、土塗り壁は粘り強い構造体であると言える。
- 6. ボード類を釘打ちした壁体の復元力特性に関する解析的考察ができていないが、ボードの上に 左官仕上げすることで、ボードと仕上げの組合わせによって大幅な耐力上昇が見込める。いずれ の組合わせでも、最大耐力時の層間変形角は1/60rad 程度である。変形が大きくなると、ボー ド類が脱落する恐れがあるので、大変形は期待できない。
- 7. 竹小舞下地土塗り壁の実験結果を単純に足し合わせ、第2章のSI邸、TU邸の結果と比較する と、荒壁を足し合わせた場合、少し小さい耐力となっているが、変形性能は実際の住宅のもの に近い。

#### 6.1.4 常時微動計測による木造住宅の振動特性

木造建物の耐震性能を論じる上で、その振動特性を評価することは重要である。卓越振動数や初期 剛性、減衰定数といった建物の微少変形域での振動特性を簡便に評価することができる方法の一つと して、常時微動計測は有効である。京阪神地域の木造住宅を対象に行った常時微動計測の結果、以下 のことが明らかになった。

- 阪神・淡路大震災の被災地にあってなお、被害の小さかった住宅の固有振動数は高く、相当の 剛性と耐力があったと推定される。対して、倒壊こそしなかったものの被害の大きかった住宅 の固有振動数は低く、損傷によって剛性が低下していた。
- 京町家の固有振動数は、張間方向が桁行方向に比べて低く、張間方向の剛性が低いと言える。
   しかし、桁行方向の固有振動数も高いとは言えず、全体的に柔らかい構造になっている。床も
   剛ではないため、建物全体が複雑に振動していると思われる。
- 3. 阪神地域で既存木造住宅の常時微動計測を行い、建物の固有振動数や減衰定数を求めた。別途 算定された重量を用いて、建物の固有振動数と等しくなるように定めた剛性が、通常の木造住 宅の設計で用いられる壁量から推定される剛性に比べて著しく大きく、木造建物の初期剛性を 知るためには、壁量計算だけでは不十分であり、常時微動計測という簡便な方法が有効である ことを示した。
- 4. 耐震補強工事を行った京都市内の木造住宅を対象に常時微動計測を行い、工事前後の剛性の変 化を調べた結果、工事後に剛性が上昇していた。剛性は耐震性能の一つの尺度だが、常時微動 計測によってその変化を定量的に捉えることができた。常時微動計測が耐震補強工事効果判定 法の一つとして有効であると言える。
- 5. 常時微動計測を行った住宅の減衰定数は、建物や桁行・張間方向によるばらつきが大きいが、 およそ 3%~8%の範囲であった。平均は約 5%である。

## 6.1.5 木造住宅の復元力特性のモデル化と強震応答解析

第2章で述べた実大建物の水平力載荷実験及び第3章で述べた木造耐力壁のせん断載荷実験の結果 に基づき、木造住宅の動力学モデルを構築した。図136、137に示すように、包絡線は第2章の結果 とほぼ一致し、スリップの形状も似たものになることから、木造建物の復元力特性が Quadri-linear と Slip の混合で表現できることを示した。減衰定数は、常時微動計測結果より得られた平均的な値 である 5%とした。

神戸海洋気象台で観測された 1995 年兵庫県南部地震の南北方向の加速度記録 (最大加速度 818gal) など合計 7 種類の地震波を入力とした強震応答解析を行い、建物のベースシアー係数と最大応答や履 歴消費エネルギーといった耐震安全性の判定尺度との関連を明らかにした。解析モデルにおいて、最 大耐力、建物重量、2 層の剛性及び入力地震波をそれぞれ変化させた場合の応答特性を解析的に求め、 これらが木造建物の強震応答に及ぼす影響を明らかにした。すなわち、最大変形を小さく抑えるため に大きなベースシアー係数が必要であること、1、2 層の重量比による応答の違いは小さいこと、2 層 の剛性が大きくなると1 層の最大変形が大きくなり倒壊の危険性が高くなることを示した。 建物が地震時に受けるダメージを一定限度に抑えるため、すなわち、小・中規模の地震に対して無 被害あるいは軽微な損傷にとどめる、または、大地震時に倒壊しないようにするために、建物にどの 程度のベースシアー係数が必要であるか、そのために耐力壁などの建物の耐力負担要素をどのように 設計するか、という尺度付けができると考えられる。

例えば、最大速度が 122.7cm/sec である JR Takatori の入力があった場合、本解析で標準とした建物の場合、ベースシアー係数が 0.5 以上あれば、1 層の最大層間変形角が 1/20rad 以下になり、相当の損傷を受けても、辛うじて倒壊を免れると言える。

### 6.2 今後の課題

木造耐力壁その他の構造要素の性能評価実験やその結果を利用して、建物全体の復元力特性を表現 しようとする研究が行われている。これらの研究を参考に、木質構造の静的、動的な挙動を明らかに していくことが必要である。

木造耐力壁の評価を壁倍率だけで行うことは適当ではない。接合部や構面の力学的挙動を解析的に 再現できるような構成則を見い出すことも重要である。例えば、ボード張り耐力壁について、ボード の材料や打ち付ける釘の長さ、ピッチによって耐力壁の負担耐力を解析的に表現できることが知られ ている<sup>54)</sup>。本研究で行ったボード張り耐力壁の実験結果との比較を行わなければならない。

本研究で行った強震応答解析で用いた復元力特性のモデルは、主に第2章で述べた木造住宅の水平 力載荷実験の結果を参考に構築したものであるので、通常用いられている完全弾塑性や、バイリニア とスリップを組み合わせた履歴特性に比べると、より現実の建物に近いものであると考えているが、 今後、建物の復元力特性をより詳細に推定して改善していく必要がある。そのために、実大木質構造 を用いた振動台による強震応答実験を行うことも必要である。本解析では、損傷による耐力の急激な 低下を考慮に入れていない。入力エネルギーと消費エネルギーの釣り合いを考慮するなどして、筋か い付木造軸組に見られるような急激な耐力低下を考慮に入れた解析手法を考えていく必要がある。

地震時の応答には建物の重量も大きな影響を及ぼすものである。本論文の地震応答解析で利用した 重量算定法は、建築基準法施行令第84条に基づくものと実務家による簡便法の2通りを用いた。ど ちらが正しいのか、他に良い方法はないか、という問題を解決する必要がある。

坂本らにより実大木造建物の振動台実験<sup>30)</sup>が行われているが、その結果との比較を行っていない。 坂本らの実験方法を精査し、本論文で用いた解析手法が妥当であるかの検討を行う必要がある。

本論では、地震応答解析で履歴消費エネルギーを算定して、その値から、応答が発散せずに復元力 特性のループをきちんと描くかどうか判断した。地震時の建物の応答は、地震による総入力エネル ギーや最大振幅の1周期あるいは2周期という短時間の衝撃的な入力(瞬間エネルギー)によって決 定されると指摘されている<sup>62),63)</sup>。このようなエネルギー入力と履歴減衰による消費エネルギーの関 係を考慮して、木造建物の耐震性能を考える必要がある。 本論文では、耐震性能評価の指標として、静的な実験結果については、従来と同様の壁倍率やベー スシアー係数、最大耐力に至るまでの消費エネルギーを、動的な解析においては、最大層間変形と履 歴消費エネルギーを用いた。木造建物の鉛直構面を形成する耐力壁などの静的な力学特性を壁倍率だ けで評価することには問題がある。本研究では、耐力壁の最大耐力に達するまでの消費エネルギーに よる評価を試みたが、変形や破壊を考慮に入れた指標も考える必要がある。

基本の耐震設計目標である「大地震時に倒壊しない」を達成するためには、強震応答解析で用いた 最大層間変形という指標は単純でわかりやすいが、耐力と変形性能の関係を考慮した指標の策定を目 指す必要がある。

# 参考文献

- 1) 日本建築学会. 1995年兵庫県南部地震災害調査速報, 1995年3月.
- 平成7年兵庫県南部地震とその被害に関する研究.平成6年度文部省科学研究費(総合研究 A)研究成果報告書(課題番号06306022)、研究代表者藤原 悌三,1995年3月.
- 3) 橋本清勇,中治弘行,東樋口護,鈴木祥之. 兵庫県南部地震による木造建物の被害 その1 調査地域 と 被害状況. 日本建築学会近畿支部研究報告書 第35号・構造系, pp. 225-228. 日本建築学会近 畿支部, 1995年6月.
- 4) 中治弘行,橋本清勇,東樋口護,鈴木祥之. 兵庫県南部地震による木造建物の被害 その2 建物概要と被害状況. 日本建築学会近畿支部研究報告書 第35号・構造系, pp. 229-232. 日本建築学会近畿支部, 1995年6月.
- 5) 鈴木祥之, 東樋口護, 橋本清勇, 北山宏貴, 標智仁, 中治弘行. 1995 年兵庫県南部地震による木造 建物の被害 その1 建物外観調査とアンケート調査. 日本建築学会大会学術講演梗概集, C-1 構造 III, pp. 5–6. 日本建築学会, 1995 年 8 月.
- 6) 鈴木祥之, 東樋口護, 橋本清勇, 標智仁, 中治弘行, 北山宏貴. 1995 年兵庫県南部地震による木造 建物の被害 その2 被害 分析. 日本建築学会大会学術講演梗概集, C-1 構造 III, pp. 7–8. 日本建 築学会, 1995 年 8 月.
- 7) 鈴木祥之,標智仁,中治弘行,北山宏貴,東樋口護,橋本清勇. 芦屋市・西宮市における木造建物の 被害. 1995年兵庫県南部地震―木造建物の被害―, pp. 73-84. 日本建築学会近畿支部, 1995年 9 月.
- 8) 鈴木祥之, 東樋口護, 中治弘行, 標智仁, 北山宏貴. 芦屋市における木造建物の微動計測による振動特性. 日本建築学会大会学術講演梗概集, C-1 構造 III, pp. 9–10. 日本建築学会, 1995 年 8 月.
- 9) 鈴木祥之,中治弘行. 微動計測による木造建物の振動特性. 1995 年兵庫県南部地震―木造建物の 被害―, pp. 169–174. 日本建築学会近畿支部, 1995 年 9 月.
- 10) 田辺平學. 耐震建築問答. 丸善, 1933年4月.
- 11) 田辺平学, 勝田千利, 後藤一雄. 交番水平荷重を受くる木造有壁骨組 (真壁) の実験. 建築学会論文 集, pp. 130–139. 1938 年.
- 12) 久田俊彦. 木造壁体の耐力に関する研究. 建築学会論文集, pp. 71-79. 1951年.

- 13) 久田俊彦. 木造建物の耐力計算法一案. 建築技術, 47 号, pp. 32–38. 1955 年.
- 14) 横尾義貫. 木造家屋の耐震化. 防災研究所年報, 第2号, pp. 49-55. 1949年11月.
- 15) 清水秀丸,村上雅英,稲山正弘. 在来軸組構法木造住宅の構造設計手法の開発 その1 任意の釘配列 で打たれた面材壁の剛性と強度の簡易評価法. 日本建築学会大会 (九州) 学術講演梗概集,第 C-1 巻, pp. 179–180, 1998 年 9 月.
- 16) 村上雅英, 稲山正弘. 在来軸組構法木造住宅の構造設計手法の開発 その2 在来軸組構法有開口壁 の耐力推定法. 日本建築学会大会 (九州) 学術講演梗概集, 第 C-1 巻, pp. 181–182, 1998 年 9 月.
- 17) 稲山正弘,村上雅英,後藤正美. 在来軸組構法木造住宅の構造設計手法の開発 その3 根太の転び を考慮した水平構面の面内せん断剛性と強度の簡易評価法. 日本建築学会大会 (九州) 学術講演梗 概集,第 C-1 巻, pp. 183–184, 1998 年 9 月.
- 18) 山口理恵,後藤正美,稲山正弘. 在来軸組構法木造住宅の構造設計手法の開発 その4 水平構面の 面内せん断試験. 日本建築学会大会 (九州)学術講演梗概集,第 C-1巻, pp. 185–186, 1998 年 9 月.
- 19) 後藤正美,山口理恵,稲山正弘. 在来軸組構法木造住宅の構造設計手法の開発 その5 水平構面の 変形成分. 日本建築学会大会 (九州) 学術講演梗概集, 第 C-1 巻, pp. 187–188, 1998 年 9 月.
- 20) 岩田聖司, 稲山正弘, 村上雅英, 後藤正美. 在来軸組構法木造住宅の構造設計手法の開発 その6水
   平構面の面内せん断試験結果と簡易評価法の比較検証. 日本建築学会大会 (九州) 学術講演梗概
   集, 第 C-1 巻, pp. 189–190, 1998 年 9 月.
- 21) 中村佳織, 稲山正弘, 村上雅英, 後藤正美. 在来軸組構法木造住宅の構造設計手法の開発 その 7 「せん断要素+軸材+接合部」置換による増分解析プログラム. 日本建築学会大会 (九州) 学術講 演梗概集, 第 C-1 巻, pp. 191–192, 1998 年 9 月.
- 22)田原賢,須田達,後藤正美,北原昭男. 在来軸組構法木造住宅の構造設計手法の開発 その8 建物諸 量の簡易算出法の提案. 日本建築学会大会 (九州)学術講演梗概集,第 C-1 巻, pp. 193–194, 1998 年 9 月.
- 23) 須田達, 田原賢, 後藤正美, 北原昭男. 在来軸組構法木造住宅の構造設計手法の開発 その9 常時微動測定の結果. 日本建築学会大会 (九州) 学術講演梗概集, 第 C-1 巻, pp. 195–196, 1998 年 9 月.
- 24) 吉永安孝,村上雅英,稲山正弘,岩崎敏之. 在来軸組構法木造住宅の構造設計手法の開発 その 10 切妻屋根の水平力の流れに関する実験的研究-1 (全体概要と剛性評価試験). 日本建築学会大会 (九 州) 学術講演梗概集,第 C-1 巻, pp. 197–198, 1998 年 9 月.

- 25) 土屋登喜彦,村上雅英,稲山正弘,岩崎敏之. 在来軸組構法木造住宅の構造設計手法の開発 その 11 切妻屋根の水平力の流れに関する実験的研究-2 (切妻屋根の剛性マトリクス). 日本建築学会 大会 (九州) 学術講演梗概集, 第 C-1 巻, pp. 199–200, 1998 年 9 月.
- 26) 田上諭,村上雅英,稲山正弘,岩崎敏之. 在来軸組構法木造住宅の構造設計手法の開発 その12 切 妻屋根の水平力の流れに関する実験的研究-3 (耐力試験の結果と考察). 日本建築学会大会(九州) 学術講演梗概集,第 C-1 巻, pp. 201–202, 1998 年 9 月.
- 27) 岩崎敏之,村上雅英,稲山正弘. 在来軸組構法木造住宅の構造設計手法の開発 その13 切妻屋根の 水平力の流れに関する実験的研究-4 (要素のせん断試験).日本建築学会大会 (九州) 学術講演梗概 集,第 C-1 巻, pp. 203–204, 1998 年 9 月.
- 28) 岩井哲 (研究代表者). 木造軸組構造建物の耐震性能と補強効果の定量的評価, 1998 年 3 月. 平成
   9 年度科学研究費補助金・重点研究領域 (2) 研究成果報告書 (課題番号 09234223).
- 29)後藤正美. 在来構法木造建物の耐震性能評価と耐震診断法. 京都工芸繊維大学,博士学位論文, 1998年3月.
- 30) 坂本功, 大橋好光他. Jr 鷹取波加振による軸組構法木造住宅の実大振動実験 その1~8. 日本建築 学会大会学術講演梗概集, Vol. C-1, pp. 153–168, 1997 年 9 月.
- 31)河合直人,岡部実,渡辺一正.在来軸組構法耐力壁の耐震性能 その2 仮動的試験.日本建築学会 大会(九州)学術講演梗概集,第C-1巻,pp.135–136,1998年9月.
- 32) 角谷智代, 佐藤孝浩, 宮澤健二. 軸組構法住宅の耐震性に関する研究 (その3・仮動的応答実験概要). 日本建築学会大会 (九州) 学術講演梗概集, 第 C-1 巻, pp. 141–142, 1998 年 9 月.
- 33) 鈴木祥之. 兵庫県南部地震による建物被害. 京都大学防災研究所年報, 第 38 号 A, 1995 年 4 月.
- 34) 日本建築学会近畿支部. 1995年兵庫県南部地震—木造建物の被害—, 1995年9月.
- 35) 後藤正美, 鈴木有, 浦憲親. 在来構法実在木造住宅の耐震性能に関する実験的検討 —(その1) 実験の方法と結果—. 金沢工業大学研究紀要 No.31.
- 36) 杉山英男, 安藤直人, 内迫貴幸, 平野茂, 中村昇, 坂本功, 有馬孝礼, 野口弘行. 在来木造の実大水 平加力実験 (その1) —単独壁線加力の結果と総合考察—. 日本建築学会学術講演梗概集 (近畿), pp. 1335–1336, 1987年 10 月.
- 37) 平野茂, 古沢信, 杉山英男, 有馬孝禮, 中村昇. 在来軸組構法木造3階建住宅の実大構造実験における建物 全体の挙動. 日本建築学会学術講演梗概集, pp. 209–210, 1990年 10月.

- 38) 日本建築学会. 建築耐震設計における保有耐力と変形性能 (1990), 1990年.
- 39) 日本建築学会. 建築耐震設計における保有耐力と変形性能, 1981年.
- 40) 日本住宅・木材技術センター編.木造住宅4構造計画の手引き.丸善株式会社,1982年.
- 41) 平嶋義彦, 金谷紀行, 畑山遠男, 神谷文夫. 筋違入り軸組の剪断性能とその構造解析 (第1報) 軸組の水 平剪断試験. 木材学会誌, 第27巻, pp. 845–854, 1981年.
- 42) 大崎順彦. 地震動のスペクトル解析入門. 鹿島出版会, 1979年.
- 43) 鈴木祥之,中治弘行,岩井哲,北原昭男.在来構法木造住宅の実大水平力載荷実験.日本建築学会
   構造系論文集, No. 499, pp. 69–76, 1997 年 9 月.
- 44) 岩井哲, 中治弘行, 鈴木祥之, 北原昭男. 在来構法木造住宅の静的水平力載荷実験による耐震性能 評価. 京都大学防災研究所年報第 39 号 B-2, pp. 51–70. 1996 年 4 月.
- 45) 日本建築学会. 木質構造設計基準・同解説, 1995 年 1 月.
- 46) (財) 日本住宅・木材技術センター.木造軸組構法住宅接合部設計技術開発事業報告書 (筋かい 試験部会), 1996 年 4 月.
- 47) 杉山英男. 地震と木造住宅. 丸善株式会社, 1996年7月.
- 48) 長稔, 伊藤倫顕, 戸田哲雄, 外舘寛, 増田一眞. 塗り壁土のせん断耐力に関する実験的研究 (その1: 研究概要および材料試験). 日本建築学会大会学術梗概集, pp. 31–32, 1995 年 8 月.
- 49) 前川秀幸. 土塗り壁の静的実験. 建築技術, pp. 157-161, 1997 年 9月.
- 50) 坂本功, 大橋好光他. 伝統的木造建築の壁体に関する振動実験 その1~3. 日本建築学会大会学術 講演梗概集 C-1, pp. 147–152, 1997 年 9 月.
- 51) 鈴木祥之, 中治弘行, 岩井哲, 藤原悌三. 筋かい付き木造軸組の耐力と変形性能の評価. 日本建築 学会近畿支部研究報告集, 第 37 号構造系, pp. 325–328, 1997 年 7 月.
- 52) 鈴木祥之, 中治弘行, 岩井哲, 藤原悌三. 筋かい付き木造軸組の耐力と変形性能の評価試験. 日本 建築学会大会学術講演梗概集, pp. 87–88, 1997 年 9 月.
- 53) 岩井哲, 中治弘行, 鈴木祥之, 北原昭男. 在来構法既存木造住宅の静的水平力載荷実験による耐震 性能評価. 京都大学防災研究所年報第 39 号 B-2, pp. 51–70. 1996 年 4 月.
- 54) Ajaya K. Gupta, M.ASCE, and George P. Kuo. Behavior of wood-framed shear walls. Journal of Structural Engineering, ASCE, Vol. 111, No. 8, pp. 1722–1733, August 1985.

- 55) 柴田明徳. 最新 耐震構造解析. 森北出版株式会社, 1981年.
- 56) ギャラリー・間. 建築 MAP 京都. TOTO 出版, 1998年.
- 57) 京都市都市計画局. 京の伝統的建造物群保存地区, 1996年3月.
- 58) 日本建築学会.建築構造物の振動実験.
- 59)(財)日本住宅・木材技術センター.木質資材利用技術耐震性向上事業報告書,1997年3月.
- 60) Yoshiyuki SUZUKI. SEISMIC RELIABILITY ANALYSIS OF HYSTERETIC STRUC-TURES BASED ON STOCHASTIC DIFFERENTIAL EQUATIONS. PhD thesis, Kyoto University, December 1985.
- 61) 中村豊ほか. 1995 年兵庫県南部地震の地震動記録波形と分析 (ii). JR 地震情報, 第 No.23d 巻.
  (財) 鉄道総合研究所ユレダス開発推進本部, 1996 年 3 月.
- 62) 壁谷澤寿海. 耐震構造設計と非線形・不確定解析. 構造物系の非線形・不確定モデリング, 応用力 学シリーズ 6, pp. 151–164. 日本建築学会.
- 63)秋山宏,宮崎光生.エネルギー入力増分に着目した応答予測.免震構造設計指針,pp. 454-458.
   1989年.
# 主要な論文

### 学術論文

- 1. 鈴木祥之・中治弘行・岩井哲・北原昭男: 在来構法木造住宅の実大水平力載荷実験. 日本建築学 会構造系論文集.No.499, pp.69-76, 1997 年 9 月.
- 2. 鈴木祥之・中治弘行:木造住宅土塗り壁の実大実験による耐震性能の再検討.日本建築学会構造 系論文集.No.515, pp.115-122, 1999 年 1 月.
- 3. 橋本清勇・中治弘行・東樋口護・鈴木祥之: 兵庫県南部地震による木造建物の被害 その1 調査 地域と被害状況. 日本建築学会近畿支部研究報告集第 35 号・構造系, pp.225-228, 1995 年 6 月.
- 中治弘行・橋本清勇・東樋口護・鈴木祥之:兵庫県南部地震による木造建物の被害 その2 建物 概要と被害状況.日本建築学会近畿支部研究報告集第35号・構造系,pp.229-232,1995年6月.
- 5. 岩井 哲・中治弘行・鈴木祥之・北原昭男: 在来構法木造住宅の静的水平力載荷実験による耐震 性能評価. 京都大学防災研究所年報第 39 号 B-2, pp.51-70.1996 年 4 月.
- 6. 鈴木祥之・東樋口護・岩井哲・北原昭男・橋本清勇・中治弘行:木造軸組構法建物の実大引張載 荷実験.日本建築学会近畿支部研究報告集第36号・構造系,pp.197-200,1996年7月.
- 7. 鈴木祥之・中治弘行・岩井哲・藤原悌三:筋かい付き木造軸組の耐力と変形性能の評価.日本建築学会近畿支部研究報告集第 37 号, pp.325-328, 1997 年 7 月.
- 8. 鈴木祥之・中治弘行: 強震動下における木造建物の地震応答と耐震性評価. 第2回都市直下地震災害総合シンポジウム, pp.211-214, 1997 年 11 月.
- 9. 鈴木祥之・中治弘行・藤原悌三:木造住宅土塗り壁の実大耐震性能実験.京都大学防災研究所年 報第41号 B-1, pp.187-198.1998年4月.
- 10. 中治弘行・鈴木祥之・清水秀丸: 在来構法木造住宅土塗り壁の実大耐震性能実験. 日本建築学会 近畿支部研究報告集第 38 号, pp.25-28, 1998 年 7 月.
- 11. 岩井 哲・中治弘行:木造在来軸組構造の方杖・袖壁による耐震補強の定量的評価.第3回都市直 下地震災害総合シンポジウム, pp.319-322.1998 年 10 月.
- 12. 鈴木祥之・中治弘行・清水秀丸: 竹小舞下地土塗り壁の耐震性能再評価. 第3回都市直下地震災 害総合シンポジウム, pp.323-326.1998 年 10 月.

- 13. 鈴木祥之・中治弘行・清水秀丸:ボード下地左官仕上げ壁の耐震性能評価実験.第3回都市直下 地震災害総合シンポジウム, pp.327-330.1998 年 10 月.
- 14. 鈴木祥之・中治弘行・清水秀丸・鎌田輝男:木造住宅土塗り壁の実大耐震性能評価実験.第10回
  日本地震工学シンポジウム, pp.2275-2280. 1998 年 11 月.

#### 報告書等

- 1. 鈴木祥之・標 智仁・中治弘行・北山宏貴・東樋口護・橋本清勇: 芦屋市・西宮市における木造 建物の被害.1995年兵庫県南部地震-木造建物の被害-, pp.73-84. 日本建築学会近畿支部, 1995 年9月.
- 2. 鈴木祥之・中治弘行: 微動計測による木造建物の振動特性, 1995 年兵庫県南部地震-木造建物の 被害-, pp.169-174. 日本建築学会近畿支部, 1995 年 9 月.
- 3. 鈴木祥之・中治弘行: 在来構法木造住宅土塗り壁の実大耐震性能実験. 木質資材利用技術耐震性 向上事業報告書, pp.321-368. (財)日本住宅・木材技術センター.1998年3月.

#### 日本建築学会大会梗概集

- 1. 鈴木祥之・東樋口護・橋本清勇・北山宏貴・標智仁・中治弘行: 1995 年兵庫県南部地震による木 造建物の被害 その1 建物外観調査とアンケート調査. 日本建築学会大会学術講演梗概集, pp.5-6, 1995 年 8 月.
- 2. 鈴木祥之・東樋口護・橋本清勇・標智仁・中治弘行・北山宏貴: 1995 年兵庫県南部地震による 木造建物の被害 その2 被害分析. 日本建築学会大会学術講演梗概集, pp.7-8, 1995 年 8 月.
- 3. 鈴木祥之・東樋口護・中治弘行・標智仁・北山宏貴: 芦屋市における木造建物の微動計測による振動特性. 日本建築学会大会学術講演梗概集, pp.9-10, 1995 年 8 月.
- 4. 岩井哲・鈴木祥之・北原昭男・中治弘行: 在来構法木造住宅の振動計測と水平力載荷実験 その
  1 静的載荷実験の概要と結果. 日本建築学会大会学術講演梗概集, pp.115-116, 1996 年 9 月.
- 5. 中治弘行・鈴木祥之・岩井哲・北原昭男: 在来構法木造住宅の振動計測と水平力載荷実験 その2振動計測の結果及び荷重~変形関係に関する考察. 日本建築学会大会学術講演梗概集, pp.117-118, 1996年9月.
- 6. 鈴木祥之・中治弘行・岩井哲・藤原悌三: 筋かい付き木造軸組の耐力と変形性能の評価試験.日本建築学会大会学術講演梗概集, pp.87-88, 1997 年 9 月.

- 7. 鈴木祥之・中治弘行・清水秀丸:木造住宅土塗り壁の実大実験による耐震性能評価 その1 実験の概要と結果.日本建築学会大会学術講演梗概集, pp.99-100. 1998 年 9 月.
- 8. 鈴木祥之・中治弘行・鎌田輝男:木造住宅土塗り壁の実大実験による耐震性能評価 その2 耐震 性能に関する考察.日本建築学会大会学術講演梗概集, pp.101-102. 1998 年 9 月.
- 9. 鈴木祥之・中治弘行・平山貴之・秋山真一:常時微動計測による木造住宅の振動特性.日本建築 学会大会学術講演梗概集, pp.221-222. 1998 年 9 月.
- 10. 岩井哲・中治弘行: 方杖・袖壁による木造在来軸組構造の耐震補強効果の定量的評価. 日本建築 学会大会学術講演梗概集, pp.93-94. 1998 年 9 月.

## 謝辞

本論文は、筆者が 1995 年兵庫県南部地震以降、京都大学防災研究所藤原・鈴木研究室において取り 組んでいる、木造建物の耐震性評価に関する一連の実験及び解析の結果を取りまとめたものである。 当時、修士論文のテーマをまだ決めかねていた筆者に木造建物の耐震性向上の重要性を示して下さっ たのが、鈴木祥之博士 (京都大学防災研究所助教授)ならびに藤原悌三博士 (当時京都大学防災研究所 教授、現滋賀県立大学環境科学部教授)であった。また、鈴木博士には、修士論文から今日に至るま で一貫して、十分すぎるほど贅沢な研究環境を維持していただき、また、建築耐震構造に留まらず多 方面に渡り、示唆に富む多くの御指導をいただいてきた。藤原博士には、滋賀県立大学へ御転任後も 折りに触れ御指導をいただいてきた。これまでに行ってきた研究成果を、まがりなりにも本論文の形 にまとめることができたのも、常に筆者を激励していただいてきた両博士のおかげである。ここに改 めて、深く感謝の意を表します。

岩井哲博士 (広島工業大学助教授) には、京都大学防災研究所都市施設耐震システム研究センター におられる頃から、実験の準備から結果の整理に至るまで多くの御指導をいただいた。また、研究を 進める上で問題意識をもつことの重要性についても示唆に富む御指摘をいただいた。改めて感謝致し ます。

北原昭男博士 (京都大学防災研究所巨大災害研究センター助手)には、木造建物の動的な挙動を把 握するために行った常時微動計測の方法やスペクトル解析に関して、多くの御指導をいただいた。ま た、研究室の先輩として、多くの有益な御意見をいただいた。東樋口護博士 (京都大学工学研究科環 境地球工学専攻助教授)には、阪神・淡路大震災での木造住宅の被害を教訓に、木造住宅の耐震性向 上の重要性を示していただいた。京都大学防災研究所の市川信夫技官には、計測機器の取り扱いや実 験室の使用に際して厳しい御指導をいただいた。

京都市の木の文化研究会の皆様には、既存住宅の水平力載荷実験や町家の常時微動計測での対象建物の御提供や実験の御協力を賜った。Ms 建築設計事務所の三澤様、秋山様には、阪神地域で行った 常時微動計測の対象建物を探していただいた。すべての水平力載荷実験や常時微動計測の対象建物の オーナーに感謝します。

全京都建設協同組合理事長荒木正亘様ならびに(株)アラキ工務店の職人の皆様、京都府左官工業 協同組合理事長村上博様ならびに(株)丸浩工業の職人の皆様には、耐力壁実験で使用した試験体の 製作をしていただいた。(有)野村重機の野村杉夫様には、既存木造建物の水平力載荷実験以来、耐力 壁実験で使用した載荷装置の設計・施工などお世話になりました。

研究室の先輩後輩ならびに近畿大学大学院工学研究科の清水秀丸君には、筆者の手際の悪さから多 くの迷惑をかけたにも関わらず、実験・計測に際して労力を、また、議論に際しては知力を提供して いただいた。ありがとうございました。

最後になりましたが、筆者を支えていただいた多くの方々に厚く御礼申し上げます。